Maintenance metabolism and carbon fluxes in Bacillus species

[1]  C. Wittmann,et al.  Comparative study on central metabolic fluxes of Bacillus megaterium strains in continuous culture using 13C labelled substrates , 2006, Bioprocess and biosystems engineering.

[2]  U. Sauer,et al.  Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data: protocol and principles. , 2007, Methods in molecular biology.

[3]  Christoph Wittmann,et al.  Transcriptional and Metabolic Responses of Bacillus subtilis to the Availability of Organic Acids: Transcription Regulation Is Important but Not Sufficient To Account for Metabolic Adaptation , 2006, Applied and Environmental Microbiology.

[4]  Annik Nanchen,et al.  Nonlinear Dependency of Intracellular Fluxes on Growth Rate in Miniaturized Continuous Cultures of Escherichia coli , 2006, Applied and Environmental Microbiology.

[5]  Nicola Zamboni,et al.  FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments , 2005, BMC Bioinformatics.

[6]  U. Sauer,et al.  Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism , 2005, Nature Genetics.

[7]  U. Sauer,et al.  Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species , 2005, Journal of bacteriology.

[8]  D. Hilbert,et al.  Sporulation of Bacillus subtilis. , 2004, Current opinion in microbiology.

[9]  Rainer Merkl,et al.  The Complete Genome Sequence of Bacillus licheniformis DSM13, an Organism with Great Industrial Potential , 2004, Journal of Molecular Microbiology and Biotechnology.

[10]  U. Sauer,et al.  The Soluble and Membrane-bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli* , 2004, Journal of Biological Chemistry.

[11]  U. Sauer,et al.  High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. , 2004, Analytical biochemistry.

[12]  A. H. Stouthamer,et al.  A continuous culture study of the bioenergetic aspects of growth and production of exocellular protease in Bacillus licheniformis , 1985, Applied Microbiology and Biotechnology.

[13]  A. H. Stouthamer,et al.  Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes , 1975, Archives of Microbiology.

[14]  Ajay Singh,et al.  Developments in the use of Bacillus species for industrial production. , 2004, Canadian journal of microbiology.

[15]  Nicola Zamboni,et al.  Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis. , 2003, FEMS microbiology letters.

[16]  J. Côté,et al.  Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences. , 2003, International journal of systematic and evolutionary microbiology.

[17]  U. Sauer,et al.  Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. , 2003, European journal of biochemistry.

[18]  Nicola Zamboni,et al.  Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. , 2003, Metabolic engineering.

[19]  Thomas Szyperski,et al.  Intracellular Carbon Fluxes in Riboflavin-Producing Bacillussubtilis during Growth on Two-Carbon Substrate Mixtures , 2002, Applied and Environmental Microbiology.

[20]  Jens Nielsen,et al.  Metabolic network analysis of Bacillus clausii on minimal and semirich medium using (13)C-labeled glucose. , 2002, Metabolic engineering.

[21]  Uwe Sauer,et al.  Bacillus subtilis Metabolism and Energetics in Carbon-Limited and Excess-Carbon Chemostat Culture , 2001, Journal of bacteriology.

[22]  U. Sauer,et al.  Stoichiometric growth model for riboflavin-producing Bacillus subtilis. , 2001, Biotechnology and bioengineering.

[23]  J E Bailey,et al.  Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. , 2001, Biotechnology and bioengineering.

[24]  J. Revuelta,et al.  Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production , 2000, Applied Microbiology and Biotechnology.

[25]  W. Hillen,et al.  Regulation of carbon catabolism in Bacillus species. , 2000, Annual review of microbiology.

[26]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[27]  N. Hannett,et al.  Genetic engineering of Bacillus subtilis for the commercial production of riboflavin , 1999, Journal of Industrial Microbiology and Biotechnology.

[28]  J E Bailey,et al.  Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. , 1998, Biotechnology and bioengineering.

[29]  U. Sauer,et al.  Metabolic fluxes in riboflavin-producing Bacillus subtilis , 1997, Nature Biotechnology.

[30]  U. Sauer,et al.  Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis , 1996, Applied and environmental microbiology.

[31]  J. Russell,et al.  Energetics of bacterial growth: balance of anabolic and catabolic reactions. , 1995, Microbiological reviews.

[32]  G. Longobardi Fed-batch versus batch fermentation , 1994 .

[33]  T. Conway,et al.  The Entner-Doudoroff pathway: history, physiology and molecular biology. , 1992, FEMS microbiology reviews.

[34]  D. Laporte,et al.  Regulation of the glyoxylate bypass operon: cloning and characterization of iclR , 1990, Journal of bacteriology.

[35]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .

[36]  H. W. Verseveld,et al.  Microbial energetics should be considered in manipulating metabolism for biotechnological purposes , 1987 .

[37]  J J Heijnen,et al.  Application of balancing methods in modeling the penicillin fermentation , 1979, Biotechnology and bioengineering.

[38]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[39]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .