Robust Control and Hot Spots in Spatiotemporal Economic Systems

We formulate stochastic robust optimal control problems, motivated by applications arising in interconnected economic systems, or spatially extended economies. We study in detail linear quadratic problems and nonlinear problems. We derive optimal robust controls and identify conditions under which concerns about model misspecification at specific site(s) could cause regulation to break down, to be very costly, or to induce pattern formation and spatial clustering. We call sites associated with these phenomena hot spots. We also provide an application of our methods by studying optimal robust control and the potential break down of regulation, due to hot spots, in a model where utility for in situ consumption is distance dependent.

[1]  Tony E. Smith,et al.  An axiomatic theory of spatial discounting behavior , 1975 .

[2]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .

[3]  Charles R. Johnson A Gersgorin-type lower bound for the smallest singular value , 1989 .

[4]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[5]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[6]  Lars Peter Hansen,et al.  Robust control and model misspecification , 2006, J. Econ. Theory.

[7]  James E. Wilen,et al.  Economics of Spatial-Dynamic Processes , 2007 .

[8]  Anastasios Xepapadeas,et al.  Pollution Control with Uncertain Stock Dynamics: When, and How, to be Precautious , 2012 .

[9]  Andrew J. Plantinga,et al.  The influence of public open space on urban spatial structure , 2003 .

[10]  Raouf Boucekkine,et al.  Bridging the Gap between Growth Theory and the New Economic Geography: Spatial Ramsey Model , 2006 .

[11]  P. Krugman The Self Organizing Economy , 1996 .

[12]  James N. Sanchirico,et al.  The Economics of Spatial-Dynamic Processes: Applications to Renewable Resources , 2007 .

[13]  W. Rudin Fourier Analysis on Groups: Rudin/Fourier , 1990 .

[14]  Arie Leizarowitz Turnpike properties of a class of aquifer control problems , 2008, Autom..

[15]  B. Hannon,et al.  An Introduction to Spatial Discounting , 2001 .

[16]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[17]  Ruth F. Curtain,et al.  System theoretic properties of platoon-type systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[18]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[19]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[20]  K. Desmet,et al.  On Spatial Dynamics , 2010 .

[21]  M. Magill,et al.  Some new results on the local stability of the process of capital accumulation , 1977 .

[22]  Prabhakar R. Pagilla,et al.  A note on the necessary conditions for the algebraic Riccati equation , 2005, IMA J. Math. Control. Inf..

[23]  Thomas J. Sargent,et al.  Recursive Macroeconomic Theory, Third Edition , 2012 .

[24]  T. Akamatsu,et al.  Spatial Discounting, Fourier, and Racetrack Economy: A Recipe for the Analysis of Spatial Agglomeration Models , 2012 .

[25]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems, 2nd Edition , 2007, Systems and control.

[26]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[27]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[28]  S. Albeverio,et al.  Graph Subspaces and the Spectral Shift Function , 2001, Canadian Journal of Mathematics.

[29]  Lars Peter Hansen,et al.  Introduction to model uncertainty and robustness , 2006, J. Econ. Theory.

[30]  J. Wilen,et al.  Bioeconomics of Spatial Exploitation in a Patchy Environment , 1999 .

[31]  Peter Whittle,et al.  Optimal Control: Basics and Beyond , 1996 .

[32]  Tony E. Smith,et al.  Spatial discounting and the gravity hypothesis , 1976 .

[33]  Roberto Triggiani,et al.  Min-max game theory and algebraic Riccati equations for boundary control problems with continuous input-solution map. Part II: The general case , 1994 .

[34]  Antonios Armaou,et al.  Robust control of parabolic PDE systems with time-dependent spatial domains , 2001, Autom..

[35]  T. Sargent,et al.  Recursive Macroeconomic Theory , 2000 .

[36]  Anastasios Xepapadeas,et al.  Pollution Control: When, and How, to Be Precautious , 2011 .

[37]  René Carmona,et al.  Interest rate models : an infinite dimensional stochastic analysis perspective , 2006 .

[38]  Anastasios Xepapadeas,et al.  Diffusion-Induced Instability and Pattern Formation in Infinite Horizon Recursive Optimal Control , 2006 .

[39]  M. W. Wong Discrete Fourier Analysis , 2011 .

[40]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[41]  Anastasios Xepapadeas,et al.  Pattern Formation, Spatial Externalities and Regulation in Coupled Economic-Ecological Systems , 2008 .

[42]  S. Kapadia,et al.  Andrew G Haldane: Rethinking the Financial Network , 2022 .

[43]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[44]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[45]  M. Magill A local analysis of N-sector capital accumulation under uncertainty , 1977 .

[46]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[47]  Pierre Bernhard,et al.  SURVEY OF LINEAR QUADRATIC ROBUST CONTROL , 2002, Macroeconomic Dynamics.

[48]  Lars Peter Hansen,et al.  A QUARTET OF SEMIGROUPS FOR MODEL SPECIFICATION, ROBUSTNESS, PRICES OF RISK, AND MODEL DETECTION , 2003 .

[49]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[50]  Paulo Brito,et al.  The dynamics of growth and distribution in a spatially heterogeneous world , 2022, Portuguese Economic Journal.