Similarity measures for identifying material parameters from hysteresis loops using inverse analysis

Sum-of-square based error formulations may be difficult to implement on an inverse analysis consisting of multiple tension-compression hysteresis loops. Five alternative measures of similarity between curves are investigated as useful tools to help identify parameters from hysteresis loops with inverse analyses. A new algorithm is presented to calculate the area between curves. Four additional methods are presented from literature, which include the Partial Curve Mapping value, discrete Fréchet distance, Dynamic Time Warping, and Curve Length approach. These similarity measures are compared by solving a non-linear regression problem resembling a single load-unload cycle. The measures are then used to solve more complicated inverse analysis, where material parameters are identified for a kinematic hardening transversely anisotropic material model. The inverse analysis finds material parameters such that a non-linear FE model reproduces the behavior from five experimental hysteresis loops. Each method was shown to find useful parameters for these problems, and should be considered a viable alternative when sum-of-square based methods may be difficult to implement. It is important to consider multiple similarity measures in cases when it is impossible to obtain a perfect match.

[1]  M. Fréchet Sur quelques points du calcul fonctionnel , 1906 .

[2]  H. Hahn Bemerkungen zu den Untersuchungen des Herrn M. Fréchet: Sur quelques points du calcul fonctionnel , 1908 .

[3]  D. Schnur,et al.  An inverse method for determining elastic material properties and a material interface , 1992 .

[4]  G. Cailletaud,et al.  Determination of brazed joint constitutive law by inverse method , 1993 .

[5]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[6]  H. Mannila,et al.  Computing Discrete Fréchet Distance ∗ , 1994 .

[7]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[8]  Jean-Claude Gelin,et al.  An inverse method for determining viscoplastic properties of aluminium alloys , 1994 .

[9]  Fabrice Pierron,et al.  The Iosipescu in-plane shear test applied to composites: A new approach based on displacement field processing , 1994 .

[10]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[11]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[12]  Otto T. Bruhns,et al.  On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behaviour , 1998 .

[13]  Hajime Igarashi,et al.  On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics , 1999 .

[14]  M. Boyce,et al.  Constitutive models of rubber elasticity: A review , 2000 .

[15]  Fusahito Yoshida,et al.  A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation , 2002 .

[16]  Nielen Stander,et al.  On the robustness of a simple domain reduction scheme for simulation‐based optimization , 2002 .

[17]  Fusahito Yoshida,et al.  Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet , 2003 .

[18]  Tobias Harth,et al.  Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments , 2004 .

[19]  Mihaela Banu,et al.  Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification , 2006 .

[20]  Stéphane Avril,et al.  The Virtual Fields Method for Extracting Constitutive Parameters From Full‐Field Measurements: a Review , 2006 .

[21]  R. M. Natal Jorge,et al.  A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone‐Rubber and Soft Tissues , 2006 .

[22]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[23]  Frédéric Barlat,et al.  Non-quadratic anisotropic potentials based on linear transformation of plastic strain rate , 2007 .

[24]  Jian Cao,et al.  A study on formulation of objective functions for determining material models , 2008 .

[25]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .

[26]  Frédéric Barlat,et al.  Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction , 2009 .

[27]  Toni Giorgino,et al.  Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation , 2009, Artif. Intell. Medicine.

[28]  A. Andrade-Campos,et al.  On the Objective Function Evaluation in Parameter Identification of Material Constitutive Models - Single-point or FE Analysis , 2010 .

[29]  Pierre Gançarski,et al.  A global averaging method for dynamic time warping, with applications to clustering , 2011, Pattern Recognit..

[30]  Kjell Mattiasson,et al.  On the identification of kinematic hardening material parameters for accurate springback predictions , 2011 .

[31]  Nielen Stander,et al.  Parameter Identification of Hysteretic Models using Partial Curve Mapping , 2012 .

[32]  António Andrade-Campos,et al.  Novel criteria for determination of material model parameters , 2012 .

[33]  Sariel Har-Peled,et al.  Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2012, Discret. Comput. Geom..

[34]  Karl Bringmann,et al.  Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[35]  Avishek Kumar,et al.  Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways , 2015, PLoS Comput. Biol..

[36]  A. Andrade-Campos,et al.  Material parameter identification within an integrated methodology considering anisotropy, hardening and rupture , 2015 .

[37]  Jens Timmer,et al.  Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models , 2015, PLoS Comput. Biol..

[38]  A. Erman Tekkaya,et al.  Springback prediction and reduction in deep drawing under influence of unloading modulus degradation , 2016 .

[39]  Sébastien Roth,et al.  Parameter identification of hardening laws for bulk metal forming using experimental and numerical approach , 2016 .

[40]  E. Markiewicz,et al.  Characterisation and Parameters Identification of Materials Constitutive and Damage Models: From Normalised Direct Approach to Most Advanced Inverse Problem Resolution , 2017 .

[41]  G. Venter,et al.  Simple implementation of plain woven polypropylene fabric , 2018 .