A robust and efficient stepwise regression method for building sparse polynomial chaos expansions
暂无分享,去创建一个
Francesco Contino | Mehrdad Raisee | Ghader Ghorbaniasl | Chris Lacor | Simon Abraham | C. Lacor | M. Raisee | F. Contino | G. Ghorbaniasl | Simon Abraham
[1] N. Draper,et al. Applied Regression Analysis. , 1967 .
[2] Andy J. Keane,et al. Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .
[3] C. Lacor,et al. A non‐intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition , 2015 .
[4] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[5] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[6] C. Lacor,et al. Chaos , 1876, Molecular Vibrations.
[7] J. Neter,et al. Applied Linear Regression Models , 1983 .
[8] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[9] R. Grandhi,et al. Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .
[10] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[11] T. Ishigami,et al. An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.
[12] Adrian Sandu,et al. Efficient uncertainty quantification with the polynomial chaos method for stiff systems , 2009, Math. Comput. Simul..
[13] R. Walters,et al. Non-Intrusive Polynomial Chaos Methods for Uncertainty Quantification in Fluid Dynamics , 2010 .
[14] G. Blatman,et al. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .
[15] Alireza Doostan,et al. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..
[16] Charles Hirsch,et al. Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions , 2010 .
[17] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[18] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[19] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[20] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[21] N. Wiener. The Homogeneous Chaos , 1938 .
[22] Bruno Sudret,et al. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .
[23] Clarence W. Rowley,et al. Uncertainty Quantification for Airfoil Icing Using Polynomial Chaos Expansions , 2014 .
[24] M. Eldred,et al. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .
[25] Jan Nordström,et al. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties , 2015 .
[26] Serhat Hosder,et al. Stochastic response surfaces based on non-intrusive polynomial chaos for uncertainty quantification , 2012, Int. J. Math. Model. Numer. Optimisation.
[27] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[28] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[29] Daniel M. Tartakovsky,et al. Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..
[30] Jeroen A. S. Witteveen,et al. Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties , 2007 .
[31] J. Fox,et al. Applied Regression Analysis and Generalized Linear Models , 2008 .
[32] Mehrdad Raisee,et al. An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD , 2016 .
[33] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[34] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .