Viewing vanilla quantum annealing through spin glasses

Quantum annealing promises to solve complex combinatorial optimization problems faster than current transistor-based computer technologies. Although to date only one commercially-available quantum annealer is procurable, one can already start to map out the application scope of these novel optimization machines. These mid-scale programmable analog special-purpose devices could, potentially, revolutionize optimization. However, their disruptive application domain remains to be found. While the commercial analog quantum optimization machine by D-Wave Systems Inc. already exceeds 1000 qubits, here it is argued that maybe smaller devices with better quality qubits, higher connectivity, and more tunability might be better suited to answer if quantum annealing will ever truly outperform specialized silicon technology combined with efficient heuristics for optimization and sampling applications.

[1]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[2]  M. Silaghi,et al.  A new optimization algorithm , 2000 .

[3]  H. Katzgraber,et al.  Ground-state statistics from annealing algorithms: quantum versus classical approaches , 2009 .

[4]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[5]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[6]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[7]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[8]  Wenlong Wang,et al.  Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[10]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[11]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[12]  Koji Hukushima,et al.  Population Annealing and Its Application to a Spin Glass , 2003 .

[13]  Andrew J. Ochoa,et al.  Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities , 2015, 1505.02278.

[14]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[15]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[16]  Andrew D. King,et al.  Constructing SAT Filters with a Quantum Annealer , 2015, SAT.

[17]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[18]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[19]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[20]  M. Hastings,et al.  From local to global ground states in Ising spin glasses , 2014, 1408.1901.

[21]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[22]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[23]  E. Berg,et al.  Singlet excitations in pyrochlore: a study of quantum frustration. , 2002, Physical review letters.

[24]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[25]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[26]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[27]  Alejandro Perdomo-Ortiz,et al.  Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.

[28]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[29]  Matthias Troyer,et al.  Feedback-optimized parallel tempering Monte Carlo , 2006, cond-mat/0602085.

[30]  Helmut G. Katzgraber,et al.  Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods , 2017, Physical review. E.

[31]  Bart Selman,et al.  From Spin Glasses to Hard Satisfiable Formulas , 2004, SAT.

[32]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[33]  Richard Phillips Feynman,et al.  Quantum mechanical computers , 1984, Feynman Lectures on Computation.

[34]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[35]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[36]  H. Rieger,et al.  New Optimization Algorithms in Physics: HARTMANN:NEW OPT.ALG.PHY. O-BK , 2004 .

[37]  Finding Low-Temperature States With Parallel Tempering, Simulated Annealing And Simple Monte Carlo , 2002, cond-mat/0209248.

[38]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[39]  Masoud Mohseni,et al.  Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .

[40]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[41]  Hidetoshi Nishimori,et al.  Exponential Enhancement of the Efficiency of Quantum Annealing by Non-Stoquastic Hamiltonians , 2016, Frontiers ICT.

[42]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[43]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[44]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[45]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[46]  Itay Hen,et al.  Unraveling Quantum Annealers using Classical Hardness , 2015, Scientific reports.

[47]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[48]  Maliheh Aramon,et al.  Enhancing quantum annealing performance for the molecular similarity problem , 2017, Quantum Information Processing.

[49]  M. Troyer,et al.  Quantum versus classical annealing of Ising spin glasses , 2014, Science.

[50]  Helmut G. Katzgraber,et al.  The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again) , 2017, 1703.00622.

[51]  J. Smolin,et al.  Putting "Quantumness" to the Test , 2013 .

[52]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[53]  Daniel A. Lidar,et al.  Consistency tests of classical and quantum models for a quantum annealer , 2014, 1403.4228.

[54]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[55]  Andrew J. Ochoa,et al.  Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension. , 2015, Physical review letters.

[56]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[57]  Itay Hen,et al.  Practical engineering of hard spin-glass instances , 2016, 1605.03607.

[58]  Daniel A. Lidar,et al.  Max 2-SAT with up to 108 qubits , 2013, 1307.3931.

[59]  H. Katzgraber,et al.  Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians. , 2016, Physical review letters.

[60]  Joao Marques-Silva Practical applications of Boolean Satisfiability , 2008, 2008 9th International Workshop on Discrete Event Systems.

[61]  M. Benedetti,et al.  Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.

[62]  Davide Castelvecchi,et al.  IBM's quantum cloud computer goes commercial , 2017, Nature.

[63]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[64]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[65]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[66]  Bikas K. Chakrabarti,et al.  Quantum Annealing and Other Optimization Methods , 2005 .

[67]  R. Biswas,et al.  A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.

[68]  Heiko Rieger,et al.  Optimization algorithms in physics , 2001 .

[69]  Sanroku Tsukamoto,et al.  Ising-Model Optimizer with Parallel-Trial Bit-Sieve Engine , 2017, CISIS.

[70]  Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer , 2016 .