The identification of nonlinear biological systems: LNL cascade models

Systems that can be represented by a cascade of a dynamic linear (L), a static nonlinear (N) and a dynamic linear (L) subsystem are considered. Various identification schemes that have been proposed for these LNL systems are critically reviewed with reference to the special problems that arise in the identification of nonlinear biological systems. A simulated LNL system is identified from limited duration input-output data using an iterative identification scheme.

[1]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[2]  E. Economakos Identification of a group of internal signals of zero-memory nonlinear systems , 1971 .

[3]  M. Korenberg Identifying Noisy Cascades of Linear and Static Nonlinear Systems , 1985 .

[4]  Henk Spekreijse,et al.  Linearizing: A method for analysing and synthesizing nonlinear systems , 1970, Kybernetik.

[5]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[6]  Donald M. Wiberg,et al.  Dynamic system identification: Experiment design and data analysis , 1983 .

[7]  I. W. Hunter,et al.  Generation of random sequences with jointly specified probability density and autocorrelation functions , 1983, Biological Cybernetics.

[8]  Thomas F. Weiss,et al.  A model of the peripheral auditory system , 1966, Kybernetik.

[9]  D. Middleton,et al.  Some general results in the theory of noise through non-linear devices , 1948 .

[10]  S. Rice Mathematical analysis of random noise , 1944 .

[11]  S. A. Billings,et al.  Analysis of estimation errors in the identification of non-linear systems , 1981 .

[12]  S. Yasui Wiener-like fourier kernels for nonlinear system identification and synthesis (nonanalytic cascade, bilinear, and feedback cases) , 1982 .

[13]  S. Zohar,et al.  Fortran subroutines for the solution of Toepltiz sets of linear equations , 1979 .

[14]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[15]  H Spekreijse,et al.  Rectification in the goldfish retina: analysis by sinusoidal and auxiliary stimulation. , 1969, Vision research.

[16]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[17]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[18]  J S Outerbridge,et al.  A nonlinear model of semicircular canal primary afferents in bullfrog. , 1982, Journal of neurophysiology.

[19]  W. Davenport Signal-to-noise ratios in bandpass limiters , 1953 .

[20]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[21]  C. Swerup On the choice of noise for the analysis of the peripheral auditory system , 2004, Biological Cybernetics.

[22]  I. Hunter,et al.  Two-sided linear filter identification , 1983, Medical and Biological Engineering and Computing.

[23]  M. Thathachar,et al.  Identification of a class of non-linear systems† , 1973 .

[24]  I W Hunter,et al.  NEXUS: a computer language for physiological systems and signal analysis. , 1984, Computers in biology and medicine.

[25]  Daniel Graupe Time series analysis: Identification and adaptive filtering , 1984 .

[26]  M. Korenberg Statistical Identification of Parallel Cascades of Linear and Nonlinear Systems , 1982 .

[27]  Julian J. Bussgang,et al.  Crosscorrelation functions of amplitude-distorted gaussian signals , 1952 .

[28]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[29]  D. R. Powell,et al.  A rapidly convergent iterative method for the solution of the generalised nonlinear least squares problem , 1972, Comput. J..

[30]  R Shapley,et al.  A comment on nonlinear analysis. , 1981, Biophysical journal.

[31]  Daniel Graupe,et al.  Identification of Systems , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[33]  A. B. Gardiner Determination of the linear output signal of a process containing single-valued nonlinearities , 1968 .

[34]  Naresh K. Sinha,et al.  Modeling and identification of dynamic systems , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  Abraham H Haddad,et al.  Nonlinear Systems: Processing of Random Signals - Classical Analysis , 1975 .

[36]  Vasilis Z. Marmarelis,et al.  Analysis of Physiological Systems , 1978, Computers in Biology and Medicine.

[37]  E. Isobe,et al.  An integro-differential formula on the Wiener kernels and its application to sandwich system identification , 1984 .

[38]  Dick Reits,et al.  SEQUENTIAL ANALYSIS OF THE VISUAL EVOKED POTENTIAL SYSTEM IN MAN; NONLINEAR ANALYSIS OF A SANDWICH SYSTEM * , 1980, Annals of the New York Academy of Sciences.

[39]  E. de Boer CORRELATION FUNCTIONS AS TOOLS FOR ANALYSIS , 1981 .

[40]  R. de Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.

[41]  M. J. R. Healy,et al.  Multichannel Time Series Analysis with Digital Computer Programs. , 1978 .

[42]  D. Brillinger The identification of a particular nonlinear time series system , 1977 .

[43]  R. Shapley,et al.  A method of nonlinear analysis in the frequency domain. , 1980, Biophysical journal.

[44]  W. H. Southwell,et al.  Fitting Data to Nonlinear Functions with Uncertainties in all Measurement Variables , 1976, Comput. J..