On the use of kernel structure for blind equalization

The mathematical theory of kernel (null space) structure of Hankel and Hankel-like matrices is applied to the problem of blind equalization of co-channel signals. This work builds on recently introduced ideas in blind equalization where the symbols are treated as deterministic parameters and estimated directly without estimating the channel first. The main contribution of the new approach is that it allows the simultaneous exploitation of shift structure in the data model and the finite alphabet property of the signals.

[1]  T. Kailath,et al.  A least-squares approach to blind channel identification , 1995, IEEE Trans. Signal Process..

[2]  T. Kailath,et al.  Generalized Displacement Structure for Block-Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices , 1994 .

[3]  J. Gunther,et al.  Blind sequential symbol estimation of co-channel finite alphabet signals , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[4]  Dirk T. M. Slock,et al.  Blind fractionally-spaced equalization, perfect-reconstruction filter banks and multichannel linear prediction , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[5]  Y. Sato,et al.  A Method of Self-Recovering Equalization for Multilevel Amplitude-Modulation Systems , 1975, IEEE Trans. Commun..

[6]  Hui Liu,et al.  Closed-form blind symbol estimation in digital communications , 1995, IEEE Trans. Signal Process..

[7]  Arogyaswami Paulraj,et al.  Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms , 1996, IEEE Trans. Signal Process..

[8]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[9]  A. Benveniste,et al.  Blind Equalizers , 1984, IEEE Trans. Commun..

[10]  Georg Heinig,et al.  Hankel Matrices Generated by the Markov Parameters of Rational Functions , 1986 .

[11]  Bart De Moor,et al.  The singular value decomposition and long and short spaces of noisy matrices , 1993, IEEE Trans. Signal Process..

[12]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[13]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[14]  William A. Gardner,et al.  A new method of channel identification , 1991, IEEE Trans. Commun..

[15]  Jitendra K. Tugnait,et al.  On blind identifiability of multipath channels using fractional sampling and second-order cyclostationary statistics , 1993, Proceedings of GLOBECOM '93. IEEE Global Telecommunications Conference.

[16]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[17]  Georg Heinig,et al.  Parallel and superfast algorithms for Hankel systems of equations , 1990 .

[18]  Arogyaswami Paulraj,et al.  A subspace approach to blind space-time signal processing for wireless communication systems , 1997, IEEE Trans. Signal Process..

[19]  Georg Heinig,et al.  Kernel structure of block Hankel and Toeplitz matrices and partial realization , 1992 .

[20]  Y. Li,et al.  Blind channel identification based on second order cyclostationary statistics , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[21]  Jitendra K. Tugnait,et al.  Identification of linear stochastic systems via second- and fourth-order cumulant matching , 1987, IEEE Trans. Inf. Theory.