Principal component analysis of interval data: a symbolic data analysis approach

SummaryThe present paper deals with the study of continous interval data by means of suitable Principal Component Analyses (PCA). Statistical units described by interval data can be assumed as special cases of Symbolic Objects (SO) (Diday, 1987). In Symbolic Data Analysis (SDA), these data are represented as hypercubes. In the present paper, we propose some extensions of the PCA with the aim of representing, in a space of reduced dimensions, images of such hypercubes, pointing out differences and similarities according to their structural features.