Learning the distribution of object trajectories for event recognition

The advent in recent years of robust, real-time, model-based tracking techniques for rigid and non-rigid moving objects has made automated surveillance and event recognition a possibility. A statistically based model of object trajectories is presented which is learnt from the observation of long image sequences. Trajectory data is supplied by a tracker using Active Shape Models, from which a model of the distribution of typical trajectories is learnt. Experimental results are included to show the generation of the model for trajectories within a pedestrian scene. We indicate how the resulting model can be used for the identification of atypical events.