An integrated, low noise patch-clamp amplifier for biological nanopore applications

We present an integrated, low noise patch-clamp amplifier for biological nanopore applications. Our amplifier consists of an integrator-differentiator architecture coupled with a novel opamp design in the CMOS 0.35 µm process. The post-layout full-chip simulation shows the input referred noise of the amplifier is 0.49 pA RMS over a 5 kHz bandwidth using a verified electrical model for the biological nanopore system. In our biological nanopore experiments studying protein-DNA interactions, we encounter capacitive transients with a nominal settling time of 5 ms. Our amplifier design reduces the settling time to 0.2 ms, without requiring any compensation circuitry.