The excess of complex Hadamard matrices

AbstractA complex Hadamard matrix,C, of ordern has elements 1, −1,i, −i and satisfiesCC*=nInwhereC* denotes the conjugate transpose ofC. LetC=[cij] be a complex Hadamard matrix of order $$n. S(C) = \sum\limits_{ij} {c_{ij} } $$ is called the sum ofC. σ(C)=|S(C)| is called the excess ofC. We study the excess of complex Hadamard matrices. As an application many real Hadamard matrices of large and maximal excess are obtained.

[1]  Christos Koukouvinos,et al.  Construction of some Hadamard matrices with maximum excess , 1990, Discret. Math..

[2]  J. J. Seidel,et al.  Orthogonal Matrices with Zero Diagonal , 1967, Canadian Journal of Mathematics.

[3]  Mieko Yamada On a series of Hadamard matrices of order 2t and the maximal excess of Hadamard matrices of order 22t , 1988, Graphs Comb..

[4]  Jennifer Seberry,et al.  Addendum to further results on base sequences, disjoint complementary sequences, OD(4t; t, t, t, t) and the excess of Hadamard matrices , 1991 .

[5]  Anthony V. Geramita,et al.  Complex Orthogonal Designs , 1978, J. Comb. Theory, Ser. A.

[6]  M. R. Best,et al.  The excess of a hadamard matrix , 1976 .

[7]  Edward T. H. Wang,et al.  The Weights of Hadamard Matrices , 1977, J. Comb. Theory, Ser. A.

[8]  Jennifer Seberry,et al.  Hadamard matrices of order =8 (mod 16) with maximal excess , 1991, Discret. Math..

[9]  Jennifer Seberry,et al.  On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures , 1990 .

[10]  Stratis Kounias,et al.  On the excess of Hadamard matrices , 1988, Discret. Math..

[11]  Jennifer Seberry,et al.  Complex Hadamard matrices , 1973 .

[12]  Stratis Kounias,et al.  The excess of Hadamard matrices and optimal designs , 1987, Discret. Math..

[13]  Hadi Kharaghani An infinite class of Hadamard matrices of maximal excess , 1991, Discret. Math..

[14]  Jennifer Seberry,et al.  Some results on the excesses of Hadamard matrices , 1988 .

[15]  HIKOE ENOMOTO,et al.  On Maximal Weights of Hadamard Matrices , 1980, J. Comb. Theory, Ser. A.

[16]  Jennifer Seberry,et al.  A remark on the excess of Hadamard matrices and orthogonal designs , 1978 .

[17]  Christos Koukouvinos Construction of some SBIBD (4k2, 2k2 + k, k2 + k) and Hadamard matrices with maximal excess , 1994 .

[18]  Jennifer Seberry SBIBD(4k2, 2k2 +k,k2 +k) and Hadamard matrices of order 4k2 with maximal excess are equivalent , 1989, Graphs Comb..

[19]  Jennifer Seberry,et al.  Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .