Past, present and future of nucleic acids electrochemistry.

Electrochemistry of nucleic acids was discovered about 40 years ago. During the first 15 years electrochemistry brought early evidence of DNA premelting and polymorphy of the DNA double helix. At present electrochemical methods working with stationary electrodes are able to detect DNA at attomol and in some cases, even at lower levels. A great progress in the development of electrochemical sensors for DNA hybridization and DNA damage achieved in recent years suggests that these sensors may soon become important tools in medicine and other areas of practical life of the 21st century.

[1]  E. Paleček,et al.  Probing DNA structure with osmium tetroxide complexes in vitro. , 1992, Methods in enzymology.

[2]  Fritz Eckstein,et al.  Nucleic acids and molecular biology , 1987 .

[3]  M. Fojta,et al.  Cleavage of Supercoiled DNA by Deoxyribonuclease I in Solution and at the Electrode Surface , 1999 .

[4]  E. Chargaff,et al.  Nucleic Acids , 2020, Definitions.

[5]  M. Fojta,et al.  Adsorption of peptide nucleic acid and DNA decamers at electrically charged surfaces. , 1997, Biophysical journal.

[6]  E. Paleček,et al.  Reaction of nucleic acid bases with the mercury electrode: determination of submicromolar concentrations of pyrimidine bases by means of cathodic stripping voltammetry , 1980 .

[7]  František Jelan,et al.  Chemically reversible electroreduction of guanine in a polynucleotide chain , 1986 .

[8]  Rüedi Wf Polarography in medicine , 1951 .

[9]  E. Paleček,et al.  Local supercoil-stabilized DNA structures. , 1991, Critical reviews in biochemistry and molecular biology.

[10]  E. Paleček,et al.  Specificity of the Complementary RNA Formed by Bacillus Subtilis Infected with Bacteriophage SP8 , 1963 .

[11]  V. Vetterl Differentielle kapazität der elektrolytischen doppelschicht in anwesenheit einiger purin- und pyrimidinderivate , 1966 .

[12]  V. Brabec,et al.  Structure, chemical reactivity and electromagnetic properties of nucleic acids , 1997 .

[13]  R. Rownd,et al.  Denaturation and Renaturation of Deoxyribonucleic Acid12 , 1963 .

[14]  M. Fojta,et al.  Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor. , 2000, Biosensors & bioelectronics.

[15]  Gustavo Rivas,et al.  Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor , 1997 .

[16]  Giulio Milazzo,et al.  Topics in Bioelectrochemistry and Bioenergetics , 1978 .

[17]  E. Paleček,et al.  Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid , 1960, Nature.

[18]  S. Takenaka Highly Sensitive Probe for Gene Analysis by Electrochemical Approach , 2001 .

[19]  Peter E. Nielsen,et al.  Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors , 1996 .

[20]  H. Holden Thorp,et al.  Cutting out the middleman: DNA biosensors based on electrochemical oxidation , 1998 .

[21]  E. Paleček,et al.  Electrochemical behaviour of biological macromolecules , 1986 .

[22]  E. Paleček Oszillographische Polarographie der Nucleinsäuren und ihrer Bestandteile , 2004, Naturwissenschaften.

[23]  E. Paleček,et al.  Biopolymer-modified electrodes in the voltammetric determination of nucleic acids and proteins at the submicrogram level , 1993 .

[24]  J. Davidson,et al.  Progress in nucleic acid research , 1963 .

[25]  E. Paleček,et al.  Reaction of nucleic acid bases with the mercury electrode: determination of purine derivatives at submicromolar concentrations by means of cathodic stripping voltammetry. , 1980, Analytical biochemistry.

[26]  E. Paleček,et al.  Trace Measurements of RNA by Potentiometric Stripping Analysis at Carbon Paste Electrodes , 1995 .

[27]  J. Mbindyo,et al.  Detection of chemically induced DNA damage by derivative square wave voltammetry. , 2000, Analytical chemistry.

[28]  E. Paleček,et al.  Determination of nanogram quantities of osmium-labeled nucleic acids by stripping (inverse) voltammetry. , 1983, Analytical biochemistry.

[29]  E. Paleček,et al.  Determination Of Nucleic Acid Bases At Nanomolar Concentrations By Means Of Cathodic Stripping Voltammetry , 1980 .

[30]  Two superhelix density-dependent DNA transitions detected by changes in DNA adsorption/desorption behavior. , 1998, Biochemistry.

[31]  E. Paleček,et al.  POLAROGRAPHIC BEHAVIOR OF CYTOSINE AND SOME OF ITS DERIVATIVES. , 1964, Archives of biochemistry and biophysics.

[32]  E. Paleček,et al.  Polarographic techniques in nucleic acid research. , 1969, Progress in nucleic acid research and molecular biology.

[33]  E. Paleček,et al.  A highly sensitive pulse-polarographic estimation of denatured deoxyribonucleic acid in native deoxyribonucleic acid samples. , 1966, Archives of biochemistry and biophysics.

[34]  E. Paleček,et al.  The polarographic behaviour of double-helical DNA containing single-strand breaks. , 1967, Biochimica et biophysica acta.

[35]  E. Paleček,et al.  Polarographic behaviour of native and denatured deoxyribonucleic acids. , 1966, Journal of molecular biology.

[36]  E. Paleček,et al.  Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer , 1986 .

[37]  R. Kizek,et al.  Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. , 2001, Analytical chemistry.

[38]  E. Paleček,et al.  Probing of DNA Structure with Osmium Tetroxide Complexes in Vitro and in Cells , 1994 .

[39]  M. Fojta,et al.  Constant Current Chronopotentiometric Stripping Analysis of Bioactive Peptides at Mercury and Carbon Electrodes , 1998 .

[40]  E. Paleček,et al.  Osmium tetroxide reactivity of DNA bases in nucleotide sequencing and probing of DNA structure. , 1991, General physiology and biophysics.

[41]  V. Vetterl Alternating current polarography of nucleosides , 1968 .

[42]  E. Paleček,et al.  Monoclonal antibody against DNA adducts with osmium structural probes. , 1999, Journal of biomolecular structure & dynamics.

[43]  V. Brabec,et al.  Electrochemical oxidation of polyadenylic acid at graphite electrodes , 1978 .

[44]  P. Elving,et al.  Polarographic behavior of nucleosides and nucleotides of purines, pyrimidines, pyridines, and flavins. , 1968, Chemical Reviews.

[45]  E. Paleček,et al.  Cyclic voltammetry of submicrogram quantities of supercoiled, linear and denatured DNAs with DNA-modified mercury electrode. , 1993, Journal of biomolecular structure & dynamics.

[46]  E. Paleček,et al.  Interaction of Methylated Adenine Derivatives with the Mercury Electrode. , 1982 .

[47]  E. Paleček,et al.  Determination of pseudouridine at submicromolar concentrations by cathodic stripping voltammetry at a mercury electrode , 1985 .

[48]  Peter E. Nielsen,et al.  Reduction and Oxidation of Peptide Nucleic Acid and DNA at Mercury and Carbon Electrodes , 1999 .

[49]  R. Sinden DNA Structure and Function , 1994 .

[50]  T. Jovin,et al.  Tumor suppressor protein p53 binds preferentially to supercoiled DNA , 1997, Oncogene.

[51]  E. Paleček Oszillographische polarographie der nucleinsäurekomponenten , 1960 .

[52]  Elizabeth M. Boon,et al.  Mutation detection by electrocatalysis at DNA-modified electrodes , 2000, Nature Biotechnology.

[53]  E. Paleček,et al.  Adsorptive transfer stripping voltammetry: determination of nanogram quantities of DNA immobilized at the electrode surface. , 1988, Analytical biochemistry.

[54]  E. Paleček,et al.  Adsorptive transfer stripping voltammetry: effect of electrode potential on the structure of DNA adsorbed at the mercury surface , 1992 .

[55]  E. Paleček Normal pulse polarography of double-helical DNA: Dependence of the wave height on starting potential , 1974 .

[56]  E. Paleček,et al.  Polarographic behavior of cytosine. , 1962, Archives of biochemistry and biophysics.

[57]  M. Fojta,et al.  A supercoiled DNA-modified mercury electrode-based biosensor for the detection of DNA strand cleaving agents. , 1998, Talanta.

[58]  P. Zuman,et al.  Polarography in medicine, biochemistry, and pharmacy , 1958 .