Comparative study of sampling methods and in situ and laboratory analysis for shallow-water submarine hydrothermal systems

[1]  R. M. Prol-Ledesma,et al.  Special issue on “shallow-water hydrothermal venting” , 2005 .

[2]  R. M. Prol-Ledesma,et al.  Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico , 2004 .

[3]  C. Canet Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially-derived carbonates? , 2003 .

[4]  R. M. Prol-Ledesma,et al.  CINNABAR DEPOSITION IN SUBMARINE COASTAL HYDROTHERMAL VENTS, PACIFIC MARGIN OF CENTRAL MEXICO , 2002 .

[5]  P. Stoffers,et al.  Discovery of active hydrothermal venting in Lake Taupo, New Zealand , 2002 .

[6]  P. Dando,et al.  Hydrothermalism in the Mediterranean Sea , 1999 .

[7]  Gwendy E.M. Hall,et al.  The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater , 1999 .

[8]  P. Sedwick,et al.  Chemistry of shallow submarine warm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy , 1996 .

[9]  R. V. Herzen,et al.  Seafloor hydrothermal systems , 1995 .

[10]  W. Seyfried,et al.  Hydrothermal chemistry of seawater from 25 degrees to 350 degrees C , 1978 .

[11]  D. White,et al.  Silica in hot-spring waters , 1956 .

[12]  W. M. Heston,et al.  The Solubility of Amorphous Silica in Water , 1954 .

[13]  J. Kuever,et al.  Hydrothermal studies in the Aegean Sea , 2000 .

[14]  V. I. Fadeev,et al.  Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea) , 1999 .