Estimating the matrixp-norm

SummaryThe Hölderp-norm of anm×n matrix has no explicit representation unlessp=1,2 or ∞. It is shown here that thep-norm can be estimated reliably inO(mn) operations. A generalization of the power method is used, with a starting vector determined by a technique with a condition estimation flavour. The algorithm nearly always computes ap-norm estimate correct to the specified accuracy, and the estimate is always within a factorn1−1/p of ‖A‖p. As a by-product, a new way is obtained to estimate the 2-norm of a rectangular matrix; this method is more general and produces better estimates in practice than a similar technique of Cline, Conn and Van Loan.

[1]  Hans Schneider,et al.  Comparison theorems for supremum norms , 1962 .

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  R. Fletcher,et al.  The Calculation of Linear Best L_p Approximations , 1971, Comput. J..

[4]  A. K. Cline Rate of Convergence of Lawson's Algorithm , 1972 .

[5]  Noël Gastinel,et al.  Linear numerical analysis , 1973 .

[6]  D. Boyd The power method for lp norms , 1974 .

[7]  Basic Numerical Mathematics , 1977 .

[8]  G. Watson Approximation theory and numerical methods , 1980 .

[9]  Basic Numerical Mathematics: Numerical Algebra , 1980 .

[10]  A. K. Cline,et al.  Generalizing the LINPACK Condition Estimator , 1981 .

[11]  Multiplicativity of lp norms for matrices , 1983 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  P. D. Tao Convergence of a subgradient method for computing the bound norm of matrices , 1984 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  M. R. Osborne Finite Algorithms in Optimization and Data Analysis , 1985 .

[16]  M. R. Osborne,et al.  An Analysis of the Total Approximation Problem in Separable Norms, and an Algorithm for the Total $l_1 $ Problem , 1985 .

[17]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[18]  Nicholas J. Highham A survey of condition number estimation for triangular matrices , 1987 .

[19]  C. Loan On estimating the condition of eigenvalues and eigenvectors , 1987 .

[20]  G. Watson,et al.  On orthogonal linear ℓ1 approximation , 1987 .

[21]  R. Fletcher Practical Methods of Optimization , 1988 .

[22]  Nicholas J. Higham,et al.  FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.

[23]  Nicholas J. Higham,et al.  Experience with a Matrix Norm Estimator , 1990, SIAM J. Sci. Comput..

[24]  Nicholas J. Higham,et al.  Algorithm 694: a collection of test matrices in MATLAB , 1991, TOMS.

[25]  T. Gillespie Noncommutative Variations on Theorems of Marcel Riesz and Others , 1991 .

[26]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[27]  N. Higham Optimization by Direct Search in Matrix Computations , 1993, SIAM J. Matrix Anal. Appl..

[28]  Yuying Li,et al.  A Globally Convergent Method for lp Problems , 1991, SIAM J. Optim..