A New Method for Finding Affine Sub-Families of NFSR Sequences

In this paper, a new and efficient method for solving affine sub-families included in a family of nonlinear feedback shift register (NFSR) sequences is proposed. The linear case is focused on since the affine case is an analogy. Let <inline-formula> <tex-math notation="LaTeX">$f(x_{0},x_{1},\ldots, x_{n}) = x_{0} \oplus f_{1}(x_{1},\ldots, x_{n-1}) \oplus x_{n}$ </tex-math></inline-formula> be a characteristic function of an <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-stage NFSR, where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is a positive integer. Let <inline-formula> <tex-math notation="LaTeX">$\deg (f)=d>1$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$f_{[d]}$ </tex-math></inline-formula> be the summation of all terms in the algebraic normal form of <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> whose degrees attain the maximum <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>. First, it is proved that every linear sub-family of <inline-formula> <tex-math notation="LaTeX">$G(f)$ </tex-math></inline-formula> is a sub-family of linear feedback shift register sequences generated by a characteristic polynomial of the form <inline-formula> <tex-math notation="LaTeX">$\sum _{i\in S} c_{i}x^{i}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$c_{i}\in \mathbb {F}_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> consists of all subscripts of variables appearing in <inline-formula> <tex-math notation="LaTeX">$f_{[d]}$ </tex-math></inline-formula>. That is to say, every linear sub-family of <inline-formula> <tex-math notation="LaTeX">$G(f)$ </tex-math></inline-formula> is a factor of some polynomial <inline-formula> <tex-math notation="LaTeX">$\sum _{i\in S} c_{i}x^{i}$ </tex-math></inline-formula> over the finite field <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2}$ </tex-math></inline-formula>. This result is a well generalization of linear recurring sequences theory since it also holds if <inline-formula> <tex-math notation="LaTeX">$d=1$ </tex-math></inline-formula>. Based on this result, a candidate set of linear sub-families could be obtained by polynomial factorizations over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2}$ </tex-math></inline-formula>. Second, we propose a new method to verify a linear sub-family whose memory requirement and time complexity are clearer than the previous method. For instance, all affine sub-families of the 160-bit main register used in Grain v1 could be determined within two seconds by a PC using the new method in this paper, which is unobtainable for previous algorithms.

[1]  Jan Søreng The Periods of the Sequences Generated by Some Symmetric Shift Registers , 1976, J. Comb. Theory, Ser. A.

[2]  Donald E. Knuth,et al.  The Art of Computer Programming: Combinatorial Algorithms, Part 1 , 2011 .

[3]  Joachim von zur Gathen,et al.  Factoring Polynomials Over Finite Fields: A Survey , 2001, J. Symb. Comput..

[4]  Eli Biham,et al.  A Practical Attack on KeeLoq , 2008, Journal of Cryptology.

[5]  K. Kjeldsen,et al.  On the Cycle Structure of a Set of Nonlinear Shift Registers with Symmetric Feedback Functions , 1976, J. Comb. Theory, Ser. A.

[6]  Wen-Feng Qi,et al.  On the largest affine sub-families of a family of NFSR sequences , 2014, Des. Codes Cryptogr..

[7]  Willi Meier,et al.  Quark: A Lightweight Hash , 2010, Journal of Cryptology.

[8]  Noga Alon,et al.  Testing Reed-Muller codes , 2005, IEEE Transactions on Information Theory.

[9]  Jan Søreng Symmetric shift registers. , 1979 .

[10]  Martin Hell,et al.  The Grain Family of Stream Ciphers , 2008, The eSTREAM Finalists.

[11]  Unjeng Cheng On the Cycle Structure of Certain Classes of Nonlinear Shift Registers , 1984, J. Comb. Theory, Ser. A.

[12]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[13]  Steve Babbage,et al.  The MICKEY Stream Ciphers , 2008, The eSTREAM Finalists.

[14]  Johannes Mykkeltveit,et al.  On the Cycle Structure of Some Nonlinear Shift Register Sequences , 1979, Inf. Control..

[15]  Wen-Feng Qi,et al.  On affine sub-families of the NFSR in Grain , 2015, Des. Codes Cryptogr..

[16]  Dongdai Lin,et al.  On affine sub-families of Grain-like structures , 2017, Des. Codes Cryptogr..