In this paper, a new and efficient method for solving affine sub-families included in a family of nonlinear feedback shift register (NFSR) sequences is proposed. The linear case is focused on since the affine case is an analogy. Let <inline-formula> <tex-math notation="LaTeX">$f(x_{0},x_{1},\ldots, x_{n}) = x_{0} \oplus f_{1}(x_{1},\ldots, x_{n-1}) \oplus x_{n}$ </tex-math></inline-formula> be a characteristic function of an <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-stage NFSR, where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is a positive integer. Let <inline-formula> <tex-math notation="LaTeX">$\deg (f)=d>1$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$f_{[d]}$ </tex-math></inline-formula> be the summation of all terms in the algebraic normal form of <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> whose degrees attain the maximum <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>. First, it is proved that every linear sub-family of <inline-formula> <tex-math notation="LaTeX">$G(f)$ </tex-math></inline-formula> is a sub-family of linear feedback shift register sequences generated by a characteristic polynomial of the form <inline-formula> <tex-math notation="LaTeX">$\sum _{i\in S} c_{i}x^{i}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$c_{i}\in \mathbb {F}_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> consists of all subscripts of variables appearing in <inline-formula> <tex-math notation="LaTeX">$f_{[d]}$ </tex-math></inline-formula>. That is to say, every linear sub-family of <inline-formula> <tex-math notation="LaTeX">$G(f)$ </tex-math></inline-formula> is a factor of some polynomial <inline-formula> <tex-math notation="LaTeX">$\sum _{i\in S} c_{i}x^{i}$ </tex-math></inline-formula> over the finite field <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2}$ </tex-math></inline-formula>. This result is a well generalization of linear recurring sequences theory since it also holds if <inline-formula> <tex-math notation="LaTeX">$d=1$ </tex-math></inline-formula>. Based on this result, a candidate set of linear sub-families could be obtained by polynomial factorizations over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2}$ </tex-math></inline-formula>. Second, we propose a new method to verify a linear sub-family whose memory requirement and time complexity are clearer than the previous method. For instance, all affine sub-families of the 160-bit main register used in Grain v1 could be determined within two seconds by a PC using the new method in this paper, which is unobtainable for previous algorithms.
[1]
Jan Søreng.
The Periods of the Sequences Generated by Some Symmetric Shift Registers
,
1976,
J. Comb. Theory, Ser. A.
[2]
Donald E. Knuth,et al.
The Art of Computer Programming: Combinatorial Algorithms, Part 1
,
2011
.
[3]
Joachim von zur Gathen,et al.
Factoring Polynomials Over Finite Fields: A Survey
,
2001,
J. Symb. Comput..
[4]
Eli Biham,et al.
A Practical Attack on KeeLoq
,
2008,
Journal of Cryptology.
[5]
K. Kjeldsen,et al.
On the Cycle Structure of a Set of Nonlinear Shift Registers with Symmetric Feedback Functions
,
1976,
J. Comb. Theory, Ser. A.
[6]
Wen-Feng Qi,et al.
On the largest affine sub-families of a family of NFSR sequences
,
2014,
Des. Codes Cryptogr..
[7]
Willi Meier,et al.
Quark: A Lightweight Hash
,
2010,
Journal of Cryptology.
[8]
Noga Alon,et al.
Testing Reed-Muller codes
,
2005,
IEEE Transactions on Information Theory.
[9]
Jan Søreng.
Symmetric shift registers.
,
1979
.
[10]
Martin Hell,et al.
The Grain Family of Stream Ciphers
,
2008,
The eSTREAM Finalists.
[11]
Unjeng Cheng.
On the Cycle Structure of Certain Classes of Nonlinear Shift Registers
,
1984,
J. Comb. Theory, Ser. A.
[12]
Solomon W. Golomb,et al.
Shift Register Sequences
,
1981
.
[13]
Steve Babbage,et al.
The MICKEY Stream Ciphers
,
2008,
The eSTREAM Finalists.
[14]
Johannes Mykkeltveit,et al.
On the Cycle Structure of Some Nonlinear Shift Register Sequences
,
1979,
Inf. Control..
[15]
Wen-Feng Qi,et al.
On affine sub-families of the NFSR in Grain
,
2015,
Des. Codes Cryptogr..
[16]
Dongdai Lin,et al.
On affine sub-families of Grain-like structures
,
2017,
Des. Codes Cryptogr..