How relativity determines the Hamiltonian description of an object in classical mechanics
暂无分享,去创建一个
[1] T. F. Jordan. Simple derivation of the Newton–Wigner position operator , 1980 .
[2] T. F. Jordan. Simple proof of no position operator for quanta with zero mass and nonzero helicity , 1978 .
[3] T. F. Jordan. Identification of the velocity operator for an irreducible unitary representation of the Poincaré group , 1977 .
[4] E. Wigner,et al. Invariant theoretic derivation of the connection between momentum and velocity , 1975 .
[5] N. Mukunda,et al. Classical Dynamics: A Modern Perspective , 1974 .
[6] G. Prosperi,et al. Canonical Realizations of the Galilei Group , 1968 .
[7] T. O. Philips. Lorentz Invariant Localized States , 1964 .
[8] D. Currie. Interaction contra Classical Relativistic Hamiltonian Particle Mechanics , 1963 .
[9] E. Sudarshan,et al. RELATIVISTIC INVARIANCE AND HAMILTONIAN THEORIES OF INTERACTING PARTICLES , 1963 .
[10] A. S. Wightman,et al. On the Localizability of Quantum Mechanical Systems , 1962 .
[11] M. Hamermesh. Galilean invariance and the Schrödinger equation , 1960 .
[12] P. Dirac. Forms of Relativistic Dynamics , 1949 .
[13] Eugene P. Wigner,et al. Localized States for Elementary Systems , 1949 .
[14] T. F. Jordan. Identification of the velocity operator in an irreducible unitary representation of the Poincaré group for imaginary mass or zero mass and variable helicity , 1978 .