A Little Honesty Goes a Long Way - The Two-Tier Model for Secure Multiparty Computation

A fundamental result in secure multiparty computation (MPC) is that in order to achieve full security, it is necessary that a majority of the parties behave honestly. There are settings, however, where the condition of an honest majority might be overly restrictive, and there is a need to define and investigate other plausible adversarial models in order to circumvent the above impossibility.

[1]  Donald Beaver,et al.  Multiparty Computation with Faulty Majority , 1989, CRYPTO.

[2]  Diana K. Smetters,et al.  Secret handshakes from pairing-based key agreements , 2003, 2003 Symposium on Security and Privacy, 2003..

[3]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[4]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[5]  Victor Shoup Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings , 2005, CRYPTO.

[6]  Rafail Ostrovsky,et al.  Round Efficiency of Multi-party Computation with a Dishonest Majority , 2003, EUROCRYPT.

[7]  C. Scovel,et al.  Concentration of the hypergeometric distribution , 2005 .

[8]  Gene Tsudik,et al.  Secret Handshakes from CA-Oblivious Encryption , 2004, ASIACRYPT.

[9]  David Chaum,et al.  The dining cryptographers problem: Unconditional sender and recipient untraceability , 1988, Journal of Cryptology.

[10]  Rafail Ostrovsky,et al.  Cryptography from Anonymity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[11]  Yehuda Lindell,et al.  Universally composable two-party and multi-party secure computation , 2002, STOC '02.

[12]  Pil Joong Lee,et al.  Advances in Cryptology — ASIACRYPT 2001 , 2001, Lecture Notes in Computer Science.

[13]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[14]  Yehuda Lindell,et al.  Fair and Efficient Secure Multiparty Computation with Reputation Systems , 2013, IACR Cryptol. ePrint Arch..

[15]  Bert den Boer,et al.  Detection of Disrupters in the DC Protocol , 1990, EUROCRYPT.

[16]  Aggelos Kiayias,et al.  Advances in Cryptology - EUROCRYPT 2004 , 2004 .

[17]  Matthew Franklin,et al.  Advances in Cryptology – CRYPTO 2004 , 2004, Lecture Notes in Computer Science.

[18]  Birgit Pfitzmann,et al.  Unconditionally Untraceable and Fault-tolerant Broadcast and SecretBallot Election , 1992 .

[19]  Yuval Ishai,et al.  Constant-Round Multiparty Computation Using a Black-Box Pseudorandom Generator , 2005, CRYPTO.

[20]  Moni Naor,et al.  Adaptively secure multi-party computation , 1996, STOC '96.

[21]  Josef Kittler,et al.  Financial Cryptography and Data Security , 2012, Lecture Notes in Computer Science.

[22]  Joseph Bonneau,et al.  What's in a Name? , 2020, Financial Cryptography.

[23]  Yehuda Lindell,et al.  More Efficient Constant-Round Multi-Party Computation from BMR and SHE , 2016, IACR Cryptol. ePrint Arch..

[24]  Serge Fehr,et al.  Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryptography , 2004, CRYPTO.

[25]  Ivan Damgård,et al.  Secure Multiparty Computation Goes Live , 2009, Financial Cryptography.

[26]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[27]  Aggelos Kiayias,et al.  Resource-based corruptions and the combinatorics of hidden diversity , 2013, ITCS '13.

[28]  Birgit Pfitzmann,et al.  Information-Theoretic Pseudosignatures and Byzantine Agreement for t ≥ n/3 , 2007 .

[29]  Yehuda Lindell,et al.  Secure Computation without Agreement , 2002, DISC.

[30]  Richard Cleve,et al.  Limits on the security of coin flips when half the processors are faulty , 1986, STOC '86.

[31]  Rafail Ostrovsky,et al.  Minimal Complete Primitives for Secure Multi-party Computation , 2001, CRYPTO.

[32]  Jonathan Katz,et al.  Adaptively secure broadcast, revisited , 2011, PODC '11.

[33]  Ari Juels,et al.  Dining Cryptographers Revisited , 2004, EUROCRYPT.

[34]  Marcin Wójcik,et al.  Does My Device Leak Information? An a priori Statistical Power Analysis of Leakage Detection Tests , 2013, ASIACRYPT.

[35]  Leonid A. Levin,et al.  Fair Computation of General Functions in Presence of Immoral Majority , 1990, CRYPTO.

[36]  Ueli Maurer,et al.  Rational Protocol Design: Cryptography against Incentive-Driven Adversaries , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[37]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[38]  Donald Beaver,et al.  Commodity-based cryptography (extended abstract) , 1997, STOC '97.

[39]  Ueli Maurer,et al.  Universally Composable Synchronous Computation , 2013, TCC.