GravityCam : higher resolution visible wide-field imaging Conference or Workshop Item
暂无分享,去创建一个
[1] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[2] Andrew D. Holland,et al. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias † , 2018, Sensors.
[3] Andrew D. Holland,et al. Fully Depleted Pinned Photodiode CMOS Image Sensor With Reverse Substrate Bias , 2017, IEEE Electron Device Letters.
[4] A. Rodríguez-Vázquez,et al. A 5-Megapixel 100-frames-per-second 0 . 5 erms Low Noise CMOS Image Sensor With Column-Parallel Two-Stage Oversampled Analog-to-Digital Converter , 2017 .
[5] F. Grundahl,et al. The two-colour EMCCD instrument for the Danish 1.54 m telescope and SONG , 2014, 1411.7401.
[6] Paul Jerram,et al. e2v new CCD and CMOS technology developments for astronomical sensors , 2014, Astronomical Telescopes and Instrumentation.
[7] Eric Stadler,et al. LGSD/NGSD: high speed optical CMOS imagers for E-ELT adaptive optics , 2013, Astronomical Telescopes and Instrumentation.
[8] Martin Dominik,et al. Studying planet populations with Einstein's blip , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[9] D. Sluse,et al. Strong Lensing by Galaxies , 2010, 1003.5567.
[10] J. G. Robertson,et al. GETTING LUCKY WITH ADAPTIVE OPTICS: FAST ADAPTIVE OPTICS IMAGE SELECTION IN THE VISIBLE WITH A LARGE TELESCOPE , 2008, 0805.1921.
[11] H. Hoekstra,et al. Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.
[12] M. Dominik,et al. An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing , 2007, 0706.2566.
[13] R. Massey,et al. Gravitational Shear, Flexion, and Strong Lensing in Abell 1689 , 2007, astro-ph/0702242.
[14] Yuki Okura,et al. A New Measure for Weak-Lensing Flexion , 2006, astro-ph/0607288.
[15] Peter Sinclaire,et al. CCD riddle: a) signal vs time: linear; b) signal vs variance: non-linear , 2006, SPIE Astronomical Telescopes + Instrumentation.
[16] Walter A. Siegmund,et al. The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.
[17] J. Beaulieu,et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.
[18] D. Bacon,et al. Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.
[19] D. Bennett,et al. Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets , 2000, astro-ph/0011466.
[20] Ray Bell,et al. Subelectron read noise at MHz pixel rates , 2001, IS&T/SPIE Electronic Imaging.
[21] G. C. Cox,et al. Diffraction-limited 800 nm imaging with the 2.56 m Nordic Optical Telescope , 2001, astro-ph/0101408.
[22] David P. Bennett,et al. Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.
[23] Andrew Gould,et al. Discovering Planetary Systems through Gravitational Microlenses , 1992 .
[24] I. Reid,et al. THE SECOND PALOMAR SKY SURVEY , 1991 .
[25] Bohdan Paczynski,et al. Gravitational microlensing by double stars and planetary systems , 1991 .
[26] Bohdan Paczynski,et al. Gravitational microlensing by the galactic halo , 1986 .
[27] Albert Einstein,et al. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie , 2006 .