PRIMUS: GALAXY CLUSTERING AS A FUNCTION OF LUMINOSITY AND COLOR AT 0.2 < z < 1

We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 <z< 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp ,π ) and wp(rp), using volume-limited samples constructed from a parent sample of over ∼130,000 galaxies with robust redshifts in seven independent fields covering 9 deg 2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0. 1M pch −1 <r p < 1M pch −1 ) clusteringandsteepercorrelationfunctionscomparedtobluegalaxies,aswellasastrongcolordependentclustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of bgal ≈ 0.9‐2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearlyconstantwithcolor,whilereddergalaxieshavestrongerclusteringintheone-halotermduetoahighersatellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity‐ and color‐environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that “cosmic variance” can be a significant source of uncertainty for high-redshift clustering measurements.

[1]  M. H. Bretherton,et al.  Statistics in Theory and Practice , 1966 .

[2]  J. C. Jackson A Critique of Rees's Theory of Primordial Gravitational Radiation , 1972 .

[3]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[4]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[5]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[6]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[7]  J. Barrow,et al.  A bootstrap resampling analysis of galaxy clustering , 1984 .

[8]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[9]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[10]  J. Bond,et al.  COBE Background radiation anisotropies and large scale structure in the universe , 1992 .

[11]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[12]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[13]  Robert Lupton,et al.  Statistics in Theory and Practice , 2020 .

[14]  M. Strauss,et al.  Clustering in the 1.2-Jy IRAS Galaxy Redshift Survey – II. Redshift distortions and $\xi (r_p, \pi)$ , 1993, astro-ph/9308013.

[15]  J. Fry The Evolution of Bias , 1996 .

[16]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[17]  Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.

[18]  The Time evolution of bias , 1998, astro-ph/9804067.

[19]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe — III. Mock redshift surveys , 1998, astro-ph/9812009.

[20]  Modelling the evolution of galaxy clustering , 1998, astro-ph/9811222.

[21]  Biasing and the distribution of dark matter haloes , 1998, astro-ph/9808138.

[22]  Szalay,et al.  A Comparison of Estimators for the Two-Point Correlation Function. , 1999, The Astrophysical journal.

[23]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[24]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[25]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[26]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[27]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering , 2001, astro-ph/0105500.

[28]  V. Narayanan,et al.  Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.

[29]  C. Baugh,et al.  The clustering evolution of the galaxy distribution , 2001, astro-ph/0103092.

[30]  R. Sheth,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[31]  R. Sheth,et al.  An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.

[32]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[33]  F. V. D. Bosch,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[34]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[35]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[36]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[37]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[38]  Bruce C. Bigelow,et al.  IMACS, the multiobject spectrograph and imager for Magellan: a status report , 2003, SPIE Astronomical Telescopes + Instrumentation.

[39]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[40]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[41]  D. York,et al.  The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.

[42]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[43]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type , 2003, astro-ph/0303668.

[44]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[45]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[46]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[47]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[48]  The VIMOS VLT deep survey - The evolution of galaxy clustering to z 2 from first epoch observations , 2004, astro-ph/0409135.

[49]  L. Moustakas,et al.  Cosmic Variance in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309071.

[50]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[51]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[52]  D. Eisenstein,et al.  Interpreting the Relationship between Galaxy Luminosity, Color, and Environment , 2004, astro-ph/0406633.

[53]  The DEEP2 Galaxy Redshift Survey: Clustering of Galaxies as a Function of Luminosity at z = 1 , 2005, astro-ph/0512233.

[54]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[55]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[56]  D. P. Schneider,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2005 .

[57]  The DEEP2 Galaxy Redshift Survey: The Evolution of Void Statistics from z ~ 1 to z ~ 0 , 2005, astro-ph/0508250.

[58]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[59]  B. Garilli,et al.  The VIMOS-VLT Deep Survey - The evolution of galaxy clustering per spectral type to z~1.5 , 2005 .

[60]  Galaxy clustering from COMBO-17: the halo occupation distribution at = 0.6 , 2005, astro-ph/0506320.

[61]  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[62]  A divided Universe: red and blue galaxies and their preferred environments , 2005, astro-ph/0505421.

[63]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[64]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[65]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[66]  The luminosity‐weighted or ‘marked’ correlation function , 2005, astro-ph/0512463.

[67]  B. Garilli,et al.  The VIMOS VLT Deep Survey: The build-up of the colour-density relation , 2006, astro-ph/0603202.

[68]  D. O. Astronomy,et al.  AGES: THE AGN AND GALAXY EVOLUTION SURVEY , 2006, 1110.4371.

[69]  J. Newman,et al.  The DEEP2 Galaxy Redshift Survey: Clustering of Groups and Group Galaxies at z~1 , 2005, astro-ph/0507647.

[70]  D. Madgwick,et al.  The DEEP2 Galaxy Redshift Survey: the relationship between galaxy properties and environment at z∼ 1 , 2006, astro-ph/0603177.

[71]  Case Western Reserve University,et al.  Galaxy evolution from halo occupation distribution modeling of deep2 and sdss galaxy clustering , 2007, astro-ph/0703457.

[72]  The cross-correlation between galaxies of different luminosities and colors , 2007, astro-ph/0703253.

[73]  D. Thompson,et al.  The Angular Correlations of Galaxies in the COSMOS Field , 2007, 0704.2545.

[74]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[75]  M. White,et al.  Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering , 2006, astro-ph/0611901.

[76]  D. Thompson,et al.  The Cosmic Evolution Survey (COSMOS): A Large-Scale Structure at z = 0.73 and the Relation of Galaxy Morphologies to Local Environment , 2007, astro-ph/0701482.

[77]  Statistical analysis of galaxy surveys III: the non-linear clustering of red and blue galaxies in the 2dFGRS , 2006, astro-ph/0611313.

[78]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[79]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[80]  Laboratoire d'Astrophysique de Marseille,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.

[81]  J. Newman,et al.  The DEEP2 Galaxy Redshift Survey: Color and Luminosity Dependence of Galaxy Clustering at z ∼ 1 , 2007, 0708.0004.

[82]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[83]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[84]  P. Norberg,et al.  Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment? , 2007, 0707.3445.

[85]  J. Loh A Valid and Fast Spatial Bootstrap for Correlation Functions , 2008, 0805.2325.

[86]  R. Nichol,et al.  The 2dF-SDSS LRG and QSO Survey: evolution of the clustering of luminous red galaxies since z= 0.6 , 2008, 0802.4288.

[87]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[88]  M. White,et al.  Red Galaxy Growth and the Halo Occupation Distribution , 2008, 0804.2293.

[89]  C. Lintott,et al.  Galaxy Zoo: Disentangling the Environmental Dependence of Morphology and Colour ⋆ , 2008, 0811.3970.

[90]  M. Blanton,et al.  SDSS galaxy clustering: luminosity and colour dependence and stochasticity , 2007, astro-ph/0702584.

[91]  M. Swanson,et al.  Methods for rapidly processing angular masks of next-generation galaxy surveys , 2007, 0711.4352.

[92]  R. Skibba,et al.  A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey , 2008, 0805.0310.

[93]  G. Brammer,et al.  A Confirmation of the Strong Clustering of Distant Red Galaxies at 2 < z < 3 , 2008, 0808.0911.

[94]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[95]  R. Wechsler,et al.  THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS , 2007, 0710.3780.

[96]  D. Hogg,et al.  THE INTRINSIC PROPERTIES OF SDSS GALAXIES , 2008, 0801.3286.

[97]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[98]  P. Schneider,et al.  Relative clustering and the joint halo occupation distribution of red sequence and blue-cloud galaxies in COMBO-17 , 2008, 0805.3459.

[99]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[100]  J. Tinker,et al.  WHAT DOES CLUSTERING TELL US ABOUT THE BUILDUP OF THE RED SEQUENCE? , 2009, 0909.1325.

[101]  R. Skibba Central and satellite colours in galaxy groups: a comparison of the halo model and SDSS group catalogues , 2008, 0805.1233.

[102]  M. White,et al.  The clustering and host haloes of galaxy mergers at high redshift , 2008, 0810.3650.

[103]  B. Garilli,et al.  The zCOSMOS Survey. The dependence of clustering on luminosity and stellar mass at z=0.2-1 , 2009, 0906.1807.

[104]  Ryan P. Mallery,et al.  The UV–optical colour dependence of galaxy clustering in the local universe , 2010, 1004.3382.

[105]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[106]  S. White,et al.  Galaxy Formation and Evolution , 2010 .

[107]  S. Driver,et al.  Quantifying cosmic variance , 2010, 1005.2538.

[108]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[109]  R. Brunner,et al.  Evolution of the clustering of photometrically selected SDSS galaxies , 2010, 1002.1476.

[110]  B. Garilli,et al.  THE DENSITY FIELD OF THE 10k zCOSMOS GALAXIES , 2009, 0903.3409.

[111]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[112]  R. Sheth,et al.  How unusual are the Shapley Supercluster and the Sloan Great Wall , 2011, 1105.3378.

[113]  Cheng Li,et al.  A tale of two populations: the stellar mass of central and satellite galaxies , 2011, 1103.3272.

[114]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[115]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[116]  A. Berlind,et al.  A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION , 2011, 1101.5155.

[117]  Davis,et al.  THREE-POINT CORRELATION FUNCTIONS OF SDSS GALAXIES: CONSTRAINING GALAXY-MASS BIAS , 2010, 1012.3462.

[118]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.

[119]  A. Connolly,et al.  THREE-POINT CORRELATION FUNCTIONS OF SDSS GALAXIES: LUMINOSITY AND COLOR DEPENDENCE IN REDSHIFT AND PROJECTED SPACE , 2010, 1007.2414.

[120]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.

[121]  C. Conselice,et al.  Measures of Galaxy Environment I - What is "Environment"? , 2011, 1109.6328.

[122]  G. Kauffmann,et al.  Autocorrelations of stellar light and mass at z∼ 0 and ∼1: from SDSS to DEEP2 , 2011, 1105.3880.

[123]  J. Moustakas,et al.  AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2 , 2011, 1101.3353.

[124]  H. Rix,et al.  A COSMIC VARIANCE COOKBOOK , 2010, 1001.1737.

[125]  C. Baugh,et al.  Statistical analysis of galaxy surveys – IV. An objective way to quantify the impact of superstructures on galaxy clustering statistics , 2011, 1106.5701.

[126]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[127]  M. Blanton,et al.  PRIMUS: OBSCURED STAR FORMATION ON THE RED SEQUENCE , 2010, 1011.4308.

[128]  Y. Mellier,et al.  Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.

[129]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts , 2012, 1206.0943.

[130]  D. Eisenstein,et al.  THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY , 2012, 1201.2954.

[131]  J. Rhodes,et al.  COSMOS: STOCHASTIC BIAS FROM MEASUREMENTS OF WEAK LENSING AND GALAXY CLUSTERING , 2012, 1202.6491.

[132]  H. Mo,et al.  EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS , 2011, 1110.1420.

[133]  R. Cen,et al.  Building galaxies by accretion and in-situ star formation , 2012, 1206.0295.

[134]  D. Wittman,et al.  GALAXY–MASS CORRELATIONS ON 10 Mpc SCALES IN THE DEEP LENS SURVEY , 2012, 1208.3904.

[135]  P. Elahi,et al.  Exploring galaxy formation models and cosmologies with galaxy clustering , 2012, 1202.3143.

[136]  M. Blanton,et al.  PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR , 2011, 1107.4368.

[137]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[138]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[139]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) ⋆ Luminosity and stellar mass dependence of galaxy clustering at 0.5< z< 1.1 , 2013, 1303.2633.

[140]  Christopher D. Martin,et al.  Halo occupation distribution modelling of green valley galaxies , 2012, 1208.6139.

[141]  'Eric Aubourg,et al.  An optimized correlation function estimator for galaxy surveys , 2012, 1211.6211.

[142]  C. Conroy,et al.  THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCE z = 2 , 2013, 1301.4497.

[143]  C. Baugh,et al.  How robust are predictions of galaxy clustering , 2013, 1301.3497.

[144]  Qi Guo,et al.  EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1–3 IN COSMOS , 2013, 1303.6689.

[145]  A. Dressler,et al.  THE IMACS CLUSTER BUILDING SURVEY. II. SPECTRAL EVOLUTION OF GALAXIES IN THE EPOCH OF CLUSTER ASSEMBLY , 2013, 1303.4272.

[146]  J. Newman,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: CLUSTERING DEPENDENCE ON GALAXY STELLAR MASS AND STAR FORMATION RATE AT z ∼ 1 , 2012, 1210.6694.

[147]  C. Conselice,et al.  Studying the emergence of the red sequence through galaxy clustering: host halo masses at z > 2 , 2013, 1303.0816.

[148]  M. Franx,et al.  TRACING GALAXIES THROUGH COSMIC TIME WITH NUMBER DENSITY SELECTION , 2013, 1302.1195.

[149]  M. Blanton,et al.  PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0–1 , 2013, 1301.1688.

[150]  O. Ilbert,et al.  Connecting stellar mass and star-formation rate to dark matter halo mass out to z ∼ 2 , 2012, 1203.5828.

[151]  Yen-Ting Lin,et al.  Modelling colour-dependent galaxy clustering in cosmological simulations , 2013, 1301.1217.

[152]  S. White,et al.  Galaxy formation in WMAP1 and WMAP7 cosmologies , 2012, 1206.0052.

[153]  Andrew P. Hearin,et al.  The dark side of galaxy colour , 2013, 1304.5557.

[154]  J. Rhodes,et al.  EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.

[155]  J. Newman,et al.  Dependence of galaxy quenching on halo mass and distance from its centre , 2012, 1203.1625.

[156]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING , 2013, 1303.2672.

[157]  Y. Mellier,et al.  Evolution of hierarchical clustering in the CFHTLS-Wide since z ∼ 1 , 2013, 1301.3301.

[158]  S. More,et al.  Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework , 2012, 1206.6890.

[159]  Genevieve M. Shattow,et al.  Measures of galaxy environment – II. Rank-ordered mark correlations , 2012, 1211.0287.

[160]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[161]  Genevieve M. Shattow,et al.  Measures of galaxy environment – III. Difficulties in identifying protoclusters at z ∼ 2 , 2013, 1306.1836.

[162]  D. Kelson,et al.  THE IMACS CLUSTER BUILDING SURVEY. I. DESCRIPTION OF THE SURVEY AND ANALYSIS METHODS , 2013, 1303.3915.

[163]  D. Gray,et al.  SHORT TIMESCALE VARIATIONS IN THE ATMOSPHERE OF ANTARES A , 2013 .

[164]  W. Percival,et al.  THE CLUSTERING OF GALAXIES IN THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOSITY AND COLOR DEPENDENCE AND REDSHIFT EVOLUTION , 2012, 1212.1211.

[165]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[166]  Santiago,et al.  The ALHAMBRA survey : evolution of galaxy clustering since z ~ 1. , 2013, 1311.3280.

[167]  B. Garilli,et al.  zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z ∼ 0.7 , 2013, 1307.4402.

[168]  P. Norberg,et al.  THE PAN-STARRS1 MEDIUM-DEEP SURVEY: THE ROLE OF GALAXY GROUP ENVIRONMENT IN THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION AND QUIESCENT FRACTION OUT TO z ∼ 0.8 , 2013, 1312.4736.

[169]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.