Time-Bin and Polarization Superdense Teleportation for Space Applications

To build a global quantum communication network, low-transmission, fiber-based communication channels can be supplemented by using a free-space channel between a satellite and a ground station on Earth. We have constructed a system that generates hyperentangled photonic "ququarts" and measures them to execute multiple quantum communication protocols of interest. We have successfully executed and characterized superdense teleportation, a modified remote-state preparation protocol that transfers more quantum information than standard teleportation, for the same classical information cost, and moreover, is in principle deterministic. Our measurements show an average fidelity of $0.94\pm0.02$, with a phase resolution of $\sim7^{\circ}$, allowing reliable transmission of $>10^5$ distinguishable quantum states. Additionally, we have demonstrated the ability to compensate for the Doppler shift, which would otherwise prevent sending time-bin encoded states from a rapidly moving satellite, thus allowing the low-error execution of phase-sensitive protocols during an orbital pass. Finally, we show that the estimated number of received coincidence counts in a realistic implementation is sufficient to enable faithful reconstruction of the received state in a single pass.

[1]  Harald T. Friis,et al.  Introduction to radio and radio antennas , 1971, IEEE Spectrum.

[2]  Paolo Villoresi,et al.  Experimental Satellite Quantum Communications. , 2014, Physical review letters.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Herbert J. Bernstein,et al.  SuperDense Quantum Teleportation , 2006, Quantum Inf. Process..

[5]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[6]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[7]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[8]  Mikhail D. Lukin,et al.  Nonlocal Optical Interferometry with Quantum Networks , 2018 .

[9]  Zach DeVito,et al.  Opt , 2017 .

[10]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[11]  Juan P. Torres Optical communications: Multiplexing twisted light , 2012 .

[12]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[13]  Stephen B. Alexander,et al.  Optical Communication Receiver Design , 1997 .

[14]  J. Borregaard,et al.  Quantum-assisted telescope arrays , 2018, Physical Review A.

[15]  Giuseppe Bianchi,et al.  Quantum internet: from communication to distributed computing! , 2018, NANOCOM.

[16]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[18]  Robin Blume-Kohout,et al.  Maximum likelihood quantum state tomography is inadmissible , 2018, 1808.01072.

[19]  Wolfgang Tittel,et al.  Time-bin entangled qubits for quantum communication created by femtosecond pulses , 2002 .

[20]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[21]  Imran Khan,et al.  Satellite-Based QKD , 2018 .

[22]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[23]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[24]  Jian-Wei Pan,et al.  Quantum Teleportation in High Dimensions. , 2019, Physical review letters.

[25]  William T. Roberts,et al.  Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations , 2014 .

[26]  H. Xian,et al.  Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics. , 2015, Applied optics.

[27]  Akihisa Tomita,et al.  Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer , 2004 .

[28]  Taehyun Kim,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[31]  Joseph C. Chapman,et al.  Hyperentangled Time-bin and Polarization Quantum Key Distribution , 2019, 1908.09018.

[32]  M. Lukin,et al.  Optical Interferometry with Quantum Networks. , 2018, Physical review letters.

[33]  Joseph C. Chapman,et al.  Progress towards implementing superdense teleportation in Space , 2018, OPTO.

[34]  N. Minorsky.,et al.  DIRECTIONAL STABILITY OF AUTOMATICALLY STEERED BODIES , 2009 .

[35]  Eric Chitambar,et al.  Tests of nonlocality with hyperentangled photons , 2019 .

[36]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[37]  Trent Michael Graham Using hyperentanglement for advanced quantum communication , 2016 .

[38]  Joseph C. Chapman,et al.  Towards an implementation of superdense teleportation in space , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[39]  Jeongwan Jin,et al.  Airborne demonstration of a quantum key distribution receiver payload , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[40]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[41]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[42]  R. Ursin,et al.  Distribution of high-dimensional entanglement via an intra-city free-space link , 2016, Nature Communications.

[43]  Robert Bedington,et al.  SpooQySats: CubeSats to demonstrate quantum key distribution technologies , 2018 .

[44]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[45]  Trent M. Graham,et al.  Superdense teleportation using hyperentangled photons , 2013, Nature Communications.

[46]  Christopher Granade,et al.  Practical Bayesian tomography , 2015, 1509.03770.

[47]  P. Kwiat,et al.  Joint spectral characterization of photon-pair sources , 2018, 1801.01195.