Extended Phase Diagram of the Lorenz Model
暂无分享,去创建一个
Holger R. Dullin | Sven Schmidt | Peter H. Richter | S. K. Grossmann | S. Grossmann | P. Richter | H. Dullin | Sven Schmidt
[1] Leo R. M. Maas,et al. The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .
[2] H. Fang,et al. Symbolic dynamics of the Lorenz equations , 1996 .
[3] Chai Wah Wu,et al. LORENZ EQUATION AND CHUA’S EQUATION , 1996 .
[4] Akio Tsuneda,et al. A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.
[5] Andrew C. Fowler,et al. A description of the Lorenz attractor at high prandtl number , 1982 .
[6] Choy Heng Lai,et al. BIFURCATION STRUCTURE AND PERIODIC ORBITS OF THE LORENZ EQUATIONS IN THE PRANDTL NUMBER SPACE , 1996 .
[7] E. A. Jackson,et al. Perspectives of nonlinear dynamics , 1990 .
[8] L. Chua,et al. The double scroll family , 1986 .
[9] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[10] Colin Sparrow,et al. Local and global behavior near homoclinic orbits , 1984 .
[11] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[12] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[13] Bai-lin Hao,et al. Systematics of the Periodic Windows in the Lorenz Model and its Relation with the Antisymmetric Cubic Map , 1988 .
[14] Valentin Afraimovich,et al. Origin and structure of the Lorenz attractor , 1977 .
[15] S. Grossmann,et al. Invariant Distributions and Stationary Correlation Functions of One-Dimensional Discrete Processes , 1977 .
[16] Colin Sparrow,et al. T-points: A codimension two heteroclinic bifurcation , 1986 .
[17] Knut H. Alfsen,et al. Systematics of the Lorenz Model at σ = 10 , 1985 .
[18] K. Robbins,et al. Periodic solutions and bifurcation structure at high R in the Lorenz model , 1979 .
[19] Detlef Lohse,et al. Wind reversals in turbulent Rayleigh-Bénard convection. , 2004, Physical review letters.
[20] Barry Saltzman,et al. Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .
[21] L. Chua,et al. Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .
[22] Andrew C. Fowler,et al. Hysteresis, Period Doubling, and Intermittency at High Prandtl Number in the Lorenz Equations , 1983 .
[23] Leon O. Chua,et al. Simplest chaotic nonautonomous circuit , 1984 .
[24] T. Shimizu. A periodic solution of the Lorenz equation in the high Rayleigh number limit , 1979 .
[25] L. Chua,et al. Methods of qualitative theory in nonlinear dynamics , 1998 .