On Balanced CSPs with High Treewidth

Tractable cases of the binary CSP are mainly divided in two classes: constraint language restrictions and constraint graph restrictions. To better understand and identify the hardest binary CSPs, in this work we propose methods to increase their hardness by increasing the balance of both the constraint language and the constraint graph. The balance of a constraint is increased by maximizing the number of domain elements with the same number of occurrences. The balance of the graph is defined using the classical definition from graph theory. In this sense we present two graph models; a first graph model that increases the balance of a graph maximizing the number of vertices with the same degree, and a second one that additionally increases the girth of the graph, because a high girth implies a high treewidth, an important parameter for binary CSPs hardness. Our results show that our more balanced graph models and constraints result in harder instances when compared to typicaI random binary CSP instances, by several orders of magnitude. Also we detect, at least for sparse constraint graphs, a higher treewidth for our graph models.

[1]  Brendan D. McKay,et al.  Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..

[2]  Christian Bessiere,et al.  MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems , 1996, CP.

[3]  Nicholas C. Wormald,et al.  Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.

[4]  Carlos Ansótegui,et al.  The Impact of Balancing on Problem Hardness in a Highly Structured Domain , 2006, AAAI.

[5]  L. Sunil Chandran A High Girth Graph Construction , 2003, SIAM J. Discret. Math..

[6]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[7]  Christian Bessiere,et al.  Statistical Regimes Across Constrainedness Regions , 2004, Constraints.

[8]  Amin Coja-Oghlan On the Laplacian Eigenvalues of Gn, p , 2007, Comb. Probab. Comput..

[9]  Martin Grohe,et al.  The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[10]  Arie M. C. A. Koster,et al.  Contraction and Treewidth Lower Bounds , 2004, ESA.

[11]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.

[12]  P. Sarnak What is . . . An expander , 2004 .

[13]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[14]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[15]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[16]  Benny Sudakov,et al.  Random regular graphs of high degree , 2001, Random Struct. Algorithms.

[17]  Carlos Ansótegui,et al.  Modeling Choices in Quasigroup Completion: SAT vs. CSP , 2004, AAAI.

[18]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[19]  Patrick Prosser,et al.  An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[20]  Tad Hogg,et al.  The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..

[21]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[22]  Patrick Prosser,et al.  Domain Filtering can Degrade Intelligent Backtracking Search , 1993, IJCAI.

[23]  Martin Grohe,et al.  The Structure of Tractable Constraint Satisfaction Problems , 2006, MFCS.

[24]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[25]  Barbara M. Smith,et al.  Modelling Exceptionally Hard Constraint Satisfaction Problems , 1997, CP.

[26]  C. R. Subramanian,et al.  Girth and treewidth , 2005, J. Comb. Theory, Ser. B.

[27]  C. R. Subramanian,et al.  A spectral lower bound for the treewidth of a graph and its consequences , 2003, Inf. Process. Lett..

[28]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[29]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[30]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[31]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[32]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[33]  Prasad Tetali,et al.  Simple Markov-chain algorithms for generating bipartite graphs and tournaments , 1997, SODA '97.

[34]  Barbara M. Smith,et al.  Sparse Constraint Graphs and Exceptionally Hard Problems , 1995, IJCAI.

[35]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[36]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[37]  Bart Selman,et al.  Balance and Filtering in Structured Satisfiable Problems , 2001, IJCAI.

[38]  Bart Selman,et al.  Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..