On Balanced CSPs with High Treewidth
暂无分享,去创建一个
Carlos Ansótegui | Ramón Béjar | Cèsar Fernández | Carles Mateu | R. Béjar | C. Ansótegui | C. Fernández | Carles Mateu
[1] Brendan D. McKay,et al. Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..
[2] Christian Bessiere,et al. MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems , 1996, CP.
[3] Nicholas C. Wormald,et al. Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.
[4] Carlos Ansótegui,et al. The Impact of Balancing on Problem Hardness in a Highly Structured Domain , 2006, AAAI.
[5] L. Sunil Chandran. A High Girth Graph Construction , 2003, SIAM J. Discret. Math..
[6] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.
[7] Christian Bessiere,et al. Statistical Regimes Across Constrainedness Regions , 2004, Constraints.
[8] Amin Coja-Oghlan. On the Laplacian Eigenvalues of Gn, p , 2007, Comb. Probab. Comput..
[9] Martin Grohe,et al. The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[10] Arie M. C. A. Koster,et al. Contraction and Treewidth Lower Bounds , 2004, ESA.
[11] Yannis C. Stamatiou,et al. Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.
[12] P. Sarnak. What is . . . An expander , 2004 .
[13] Toby Walsh,et al. Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.
[14] Noga Alon,et al. Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.
[15] Toby Walsh,et al. Easy Problems are Sometimes Hard , 1994, Artif. Intell..
[16] Benny Sudakov,et al. Random regular graphs of high degree , 2001, Random Struct. Algorithms.
[17] Carlos Ansótegui,et al. Modeling Choices in Quasigroup Completion: SAT vs. CSP , 2004, AAAI.
[18] Fan Chung,et al. Spectral Graph Theory , 1996 .
[19] Patrick Prosser,et al. An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..
[20] Tad Hogg,et al. The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..
[21] Hans L. Bodlaender,et al. Discovering Treewidth , 2005, SOFSEM.
[22] Patrick Prosser,et al. Domain Filtering can Degrade Intelligent Backtracking Search , 1993, IJCAI.
[23] Martin Grohe,et al. The Structure of Tractable Constraint Satisfaction Problems , 2006, MFCS.
[24] Jaroslav Nesetril,et al. On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.
[25] Barbara M. Smith,et al. Modelling Exceptionally Hard Constraint Satisfaction Problems , 1997, CP.
[26] C. R. Subramanian,et al. Girth and treewidth , 2005, J. Comb. Theory, Ser. B.
[27] C. R. Subramanian,et al. A spectral lower bound for the treewidth of a graph and its consequences , 2003, Inf. Process. Lett..
[28] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[29] Tad Hogg,et al. Phase Transitions and the Search Problem , 1996, Artif. Intell..
[30] Joel Friedman,et al. A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.
[31] Fan Chung Graham,et al. The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..
[32] Arie M. C. A. Koster,et al. Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..
[33] Prasad Tetali,et al. Simple Markov-chain algorithms for generating bipartite graphs and tournaments , 1997, SODA '97.
[34] Barbara M. Smith,et al. Sparse Constraint Graphs and Exceptionally Hard Problems , 1995, IJCAI.
[35] Robert M. Haralick,et al. Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..
[36] Martin E. Dyer,et al. Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..
[37] Bart Selman,et al. Balance and Filtering in Structured Satisfiable Problems , 2001, IJCAI.
[38] Bart Selman,et al. Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..