Geographic range size is predicted by plant mating system.

Species' geographic ranges vary enormously, and even closest relatives may differ in range size by several orders of magnitude. With data from hundreds of species spanning 20 genera in 15 families, we show that plant species that autonomously reproduce via self-pollination consistently have larger geographic ranges than their close relatives that generally require two parents for reproduction. Further analyses strongly implicate autonomous self-fertilisation in causing this relationship, as it is not driven by traits such as polyploidy or annual life history whose evolution is sometimes correlated with selfing. Furthermore, we find that selfers occur at higher maximum latitudes and that disparity in range size between selfers and outcrossers increases with time since their evolutionary divergence. Together, these results show that autonomous reproduction--a critical biological trait that eliminates mate limitation and thus potentially increases the probability of establishment--increases range size.

[1]  R. Ornduff A biosystematic survey of the goldfield genus lasthenia : (Compositae: helenieae) , 1966 .

[2]  M. E. Mort,et al.  A Test of Baker’s Law: Breeding Systems and the Radiation of Tolpis (Asteraceae) in the Canary Islands , 2008, International Journal of Plant Sciences.

[3]  R. Vilà,et al.  The uneven phylogeny and biogeography of Erodium (Geraniaceae): radiations in the Mediterranean and recent recurrent intercontinental colonization. , 2010, Annals of botany.

[4]  K. Kay,et al.  A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects , 2006, BMC Evolutionary Biology.

[5]  Dawn M. Kaufman,et al.  THE GEOGRAPHIC RANGE: Size, Shape, Boundaries, and Internal Structure , 1996 .

[6]  J. M. Smith,et al.  Does Muller's ratchet work with selfing? , 1978 .

[7]  S. Kalisz,et al.  Evolutionary consequences of self-fertilization in plants , 2013, Proceedings of the Royal Society B: Biological Sciences.

[8]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[9]  K. Holsinger,et al.  Breeding system variation in 10 evening primroses (Oenothera sections Anogra and Kleinia; Onagraceae). , 2010, American journal of botany.

[10]  M. Koch,et al.  Poorly known relatives of Arabidopsis thaliana. , 2006, Trends in plant science.

[11]  S. Jain,et al.  Genetic differentiation studies and phylogenetic inference in the plant genus Limnanthes (section Inflexae) , 1983, Theoretical and Applied Genetics.

[12]  C. Eckert,et al.  Evolution of dispersal and mating systems along geographic gradients: implications for shifting ranges , 2014 .

[13]  K. Gaston,et al.  Spatial patterns in the species richness of birds in the New World , 1996 .

[14]  B. Husband,et al.  Influence of phylogeny and ploidy on species ranges of North American angiosperms , 2009 .

[15]  F. Massol,et al.  Pollination Fluctuations Drive Evolutionary Syndromes Linking Dispersal and Mating System , 2009, The American Naturalist.

[16]  T. Backeljau,et al.  Is there a geographical pattern in the breeding system of a complex of hermaphroditic slugs (Mollusca: Gastropoda: Carinarion)? , 2000, Heredity.

[17]  R. Lande,et al.  THE EVOLUTION OF SELF‐FERTILIZATION AND INBREEDING DEPRESSION IN PLANTS. I. GENETIC MODELS , 1985, Evolution; international journal of organic evolution.

[18]  Salvatore J. Agosta,et al.  A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals , 2013, PloS one.

[19]  L. Schultheis Systematics of Downingia (Campanulaceae) based on Molecular Sequence Data: Implications for Floral and Chromosome Evolution , 2009 .

[20]  H. Hurka,et al.  ‘Missing link’ species Capsella orientalis and Capsella thracica elucidate evolution of model plant genus Capsella (Brassicaceae) , 2012, Molecular ecology.

[21]  Linda Partridge The Masterpiece of Nature: The Evolution and Genetics of Sexuality, Graham Bell. Croom Helm, London and Canberra (1982), 635, Price £25.00 , 1983 .

[22]  J. Hamrick,et al.  Effects of life history traits on genetic diversity in plant species , 1996 .

[23]  S. Kalisz,et al.  Phylogenetic perspectives on diversification, biogeography, and floral evolution of Collinsia and Tonella (Plantaginaceae). , 2011, American journal of botany.

[24]  S. Weller,et al.  A phylogenetic analysis of Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae): implications for the evolution of breeding systems , 1995 .

[25]  K. Böhning‐Gaese,et al.  Range Size: Disentangling Current Traits and Phylogenetic and Biogeographic Factors , 2006, The American Naturalist.

[26]  A Molecular Phylogeny of Limnanthes (Limnanthaceae) and Investigation of an Anomalous Limnanthes Population from California, U. S. A. , 2010 .

[27]  T. Ashman,et al.  Bioclimatic evaluation of geographical range in Fragaria (Rosaceae): consequences of variation in breeding system, ploidy and species age , 2014 .

[28]  V. Grant,et al.  Flower pollination in the phlox family , 1965 .

[29]  G. Stebbins Self Fertilization and Population Variability in the Higher Plants , 1957, The American Naturalist.

[30]  C. Goodwillie MULTIPLE ORIGINS OF SELF‐COMPATIBILITY IN LINANTHUS SECTION LEPTOSIPHON (POLEMONIACEAE): PHYLOGENETIC EVIDENCE FROM INTERNAL‐TRANSCRIBED‐SPACER SEQUENCE DATA , 1999, Evolution; international journal of organic evolution.

[31]  K. Whitney,et al.  Population genetic diversity influences colonization success , 2010, Molecular ecology.

[32]  A. Richards,et al.  Seed weight and seed number affect subsequent fitness in outcrossing and selfing Primula species. , 2000, The New phytologist.

[33]  D. Tilman,et al.  Sexuality and the Components of Environmental Uncertainty: Clues from Geographic Parthenogenesis in Terrestrial Animals , 1978, The American Naturalist.

[34]  H. G. Baker,et al.  SELF‐COMPATIBILITY AND ESTABLISHMENT AFTER ‘“LONG‐DISTANCE” DISPERSAL , 1955 .

[35]  S. Barrett,et al.  BAKER'S LAW REVISITED: REPRODUCTIVE ASSURANCE IN A METAPOPULATION , 1998, Evolution; international journal of organic evolution.

[36]  L. Harder,et al.  The comparative biology of pollination and mating in flowering plants , 1996 .

[37]  S. Kalisz,et al.  Dichogamy correlates with outcrossing rate and defines the selfing syndrome in the mixed-mating genus Collinsia. , 2012, Annals of botany.

[38]  B. Barringer Polyploidy and self-fertilization in flowering plants. , 2007, American journal of botany.

[39]  A. Brody,et al.  Mating strategies and pollen limitation in a globally threatened perennial Polemonium vanbruntiae , 2008 .

[40]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[41]  P. Vargas,et al.  Autecological traits determined two evolutionary strategies in Mediterranean plants during the Quaternary: low differentiation and range expansion versus geographical speciation in Linaria , 2013, Molecular ecology.

[42]  R. Ornduff,et al.  Goldfields Revisited: A Molecular Phylogenetic Perspective on the Evolution of Lasthenia (Compositae: Heliantheae sensu lato) , 2001, International Journal of Plant Sciences.

[43]  Kevin J. Gaston,et al.  The structure and dynamics of geographic ranges , 2003 .

[44]  W. Armbruster EVOLUTION OF PLANT POLLINATION SYSTEMS: HYPOTHESES AND TESTS WITH THE NEOTROPICAL VINE DALECHAMPIA , 1993, Evolution; international journal of organic evolution.

[45]  Allison K. Shaw,et al.  Dispersal Evolution in the Presence of Allee Effects Can Speed Up or Slow Down Invasions , 2015, The American Naturalist.

[46]  J. Doyle,et al.  The reticulate history of Medicago (Fabaceae). , 2008, Systematic biology.

[47]  R. Olmstead,et al.  Patterns of evolution in western North American Mimulus (Phrymaceae). , 2004, American journal of botany.

[48]  A. Angert,et al.  THE EVOLUTION OF ENVIRONMENTAL TOLERANCE AND RANGE SIZE: A COMPARISON OF GEOGRAPHICALLY RESTRICTED AND WIDESPREAD MIMULUS , 2014, Evolution; international journal of organic evolution.

[49]  Paul C. Johnson Extension of Nakagawa & Schielzeth's R2GLMM to random slopes models , 2014, Methods in ecology and evolution.

[50]  H. G. Baker,et al.  The Evolution of Weeds , 1974 .

[51]  Nancy Knowlton,et al.  Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. , 2007, Ecology letters.

[52]  S. Kalisz,et al.  The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence , 2005 .

[53]  M. Johnston,et al.  EVOLUTIONARY HISTORY OF THE MATING SYSTEM IN AMSINCKIA (BORAGINACEAE) , 1997, Evolution; international journal of organic evolution.

[54]  D. Bates,et al.  Linear Mixed-Effects Models using 'Eigen' and S4 , 2015 .

[55]  Y. Willi,et al.  Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata. , 2014, Ecology letters.

[56]  James B. Beck,et al.  Further insights into the phylogeny of Arabidopsis (Brassicaceae) from nuclear Atmyb2 flanking sequence. , 2007, Molecular phylogenetics and evolution.

[57]  G. Henslow XXI. On the Self‐fertilization of Plants. , 1879 .

[58]  S. Lester,et al.  The biogeography of plant reproduction: potential determinants of species’ range sizes , 2006 .

[59]  M. Rausher,et al.  Effects of plant sex on range distributions and allocation to reproduction. , 2010, The New phytologist.

[60]  Patrick J. McIntyre,et al.  Evolution and Ecology of Species Range Limits , 2009 .

[61]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[62]  C. Orme,et al.  Speciation and Extinction Drive the Appearance of Directional Range Size Evolution in Phylogenies and the Fossil Record , 2012, PLoS biology.

[63]  Cristina Roquet,et al.  Evolution of Pollen/Ovule Ratios and Breeding System in Erodium (Geraniaceae) , 2011 .

[64]  E. Hörandl,et al.  The evolution of self-fertility in apomictic plants , 2010, Sexual Plant Reproduction.

[65]  C. Goodwillie Pollen Limitation and the Evolution of Self‐Compatibility in Linanthus (Polemoniaceae) , 2001, International Journal of Plant Sciences.

[66]  K. Gaston,et al.  Species-range-size distributions: patterns, mechanisms and implications. , 1996, Trends in ecology & evolution.

[67]  D. Ebert,et al.  A new hypothesis to explain geographic parthenogenesis , 2004 .

[68]  J. Busch,et al.  Is self-fertilization an evolutionary dead end? , 2013, The New phytologist.

[69]  C. Ritland,et al.  VARIATION OF SEX ALLOCATION AMONG EIGHT TAXA OF THE MIMULUS GUTTATUS SPECIES COMPLEX (SCROPHULARIACEAE) , 1989 .

[70]  W. Armbruster Multilevel Comparative Analysis of the Morphology, Function, and Evolution of Dalechampia Blossoms , 1988 .

[71]  P. Bierzychudek Patterns in plant parthenogenesis , 1985, Experientia.

[72]  H. Lewis,et al.  The genus Clarkia , 1956 .

[73]  G. Ledyard Stebbins,et al.  Variation and Evolution in Plants , 1951 .

[74]  M. Arroyo,et al.  Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). , 2006, American journal of botany.

[75]  E. Conti,et al.  Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid-polyploid species complex of Primula. , 2006, The New phytologist.

[76]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[77]  D. Jablonski,et al.  Heritability at the Species Level: Analysis of Geographic Ranges of Cretaceous Mollusks , 1987, Science.

[78]  Jacob B. Slyder,et al.  Can differences in autonomous selfing ability explain differences in range size among sister-taxa pairs of Collinsia (Plantaginaceae)? An extension of Baker's Law. , 2009, The New phytologist.

[79]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[80]  E. Goldberg,et al.  COMPARATIVE EVIDENCE FOR THE CORRELATED EVOLUTION OF POLYPLOIDY AND SELF‐COMPATIBILITY IN SOLANACEAE , 2011, Evolution; international journal of organic evolution.

[81]  M. Arroyo,et al.  Evolution of autonomous selfing accompanies increased specialization in the pollination system of Schizanthus (Solanaceae). , 2009, American journal of botany.

[82]  B. Pujol,et al.  Reduced inbreeding depression after species range expansion , 2009, Proceedings of the National Academy of Sciences.

[83]  G. Coop,et al.  Genomic Identification of Founding Haplotypes Reveals the History of the Selfing Species Capsella rubella , 2013, PLoS genetics.

[84]  H. G. Baker THE EVOLUTION, FUNCTIONING AND BREAKDOWN OF HETEROMORPHIC INCOMPATIBILITY SYSTEMS. I. THE PLUMBAGINACEAE , 1966, Evolution; international journal of organic evolution.

[85]  B. G. Baldwin,et al.  Macroevolutionary patterns of defense and pollination in Dalechampia vines: Adaptation, exaptation, and evolutionary novelty , 2009, Proceedings of the National Academy of Sciences.

[86]  M. Lynch Destabilizing Hybridization, General-Purpose Genotypes and Geographic Parthenogenesis , 1984, The Quarterly Review of Biology.

[87]  D. Soltis,et al.  Molecular Phylogenetic Analysis of the Hawaiian Endemics Schiedea and Alsinidendron (Caryophyllaceae) , 1996 .

[88]  D. Schemske,et al.  A Phylogeny of the Genus Polemonium Based on Amplified Fragment Length Polymorphism (AFLP) Markers , 2009 .

[89]  M. Rausher,et al.  Plant sex and the evolution of plant defenses against herbivores , 2009, Proceedings of the National Academy of Sciences.