Recovering Exact Results from Inexact Numerical Data in Algebraic Geometry
暂无分享,去创建一个
Jonathan D. Hauenstein | Chris Peterson | Andrew J. Sommese | Daniel J. Bates | Timothy M. McCoy | J. Hauenstein | A. Sommese | C. Peterson
[1] E. Allgower,et al. Introduction to Numerical Continuation Methods , 1987 .
[2] Burton S. Kaliski,et al. Polynomial Time , 2005, Encyclopedia of Cryptography and Security.
[3] Jonathan D. Hauenstein,et al. Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..
[4] Zhonggang Zeng,et al. Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.
[5] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[6] Andrew J. Sommese,et al. The numerical solution of systems of polynomials - arising in engineering and science , 2005 .
[7] David H. Bailey,et al. Parallel integer relation detection: Techniques and applications , 2001, Math. Comput..
[8] Chris Peterson,et al. Computing intersection numbers of Chern classes , 2013, J. Symb. Comput..
[9] Claus-Peter Schnorr,et al. Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.
[10] Claus-Peter Schnorr,et al. Progress on LLL and Lattice Reduction , 2010, The LLL Algorithm.
[11] Jan Verschelde,et al. Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .
[12] Tien Yien Li,et al. Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.
[13] Andrew J. Sommese,et al. Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..
[14] Andrew J. Sommese,et al. Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..
[15] Franklin T. Luk,et al. An improved LLL algorithm , 2008 .
[16] Jonathan D. Hauenstein,et al. A Numerical Local Dimension Test for Points on the Solution Set of a System of Polynomial Equations , 2009, SIAM J. Numer. Anal..
[17] Hans Schönemann,et al. SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.
[18] Damien Stehlé,et al. An LLL Algorithm with Quadratic Complexity , 2009, SIAM J. Comput..
[19] Charles W. Wampler,et al. Interactions of Classical and Numerical Algebraic Geometry , 2009 .
[20] D. Eisenbud,et al. Direct methods for primary decomposition , 1992 .
[21] Chris Peterson,et al. A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set , 2006, J. Complex..
[22] Chris Peterson,et al. NUMERICAL COMPUTATION OF THE DIMENSIONS OF THE COHOMOLOGY OF TWISTS OF IDEAL SHEAVES , 2008 .
[23] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[24] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[25] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .
[26] Paul Kutler,et al. A Polynomial Time, Numerically Stable Integer Relation Algorithm , 1998 .
[27] Daniele Micciancio,et al. Faster exponential time algorithms for the shortest vector problem , 2010, SODA '10.
[28] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[29] Tien-Yien Li. Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .
[30] Susanne Wetzel,et al. Heuristics on lattice basis reduction in practice , 2002, JEAL.
[31] Jeffrey C. Lagarias,et al. Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.
[32] Anton Leykin. Numerical primary decomposition , 2008, ISSAC '08.
[33] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[34] S. L. Kleiman. INTERSECTION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. Band 2) , 1985 .