Review on sorption materials and technologies for heat pumps and thermal energy storage

Sorption is used for absorption/adsorption heat pumps (sorption refrigeration) and sorption for thermal energy storage (TES). This paper is the first review where the research on both applications is shown together. Sorption has advanced very much due to the immense amount of research carried out around heat pumping and solar refrigeration. Moreover, sorption and thermochemical heat storage attracted considerable attention recently since this technology offers various opportunities in the design of renewable and sustainable energy systems. The paper presents the operation principle of the technology and the materials used or in research are listed and compared. Absorption heat pumping and refrigeration research is today more focussed in the decrease of unit costs and increase of energy efficiency, adsorption is focussed in finding more efficient working pairs, and storage is testing the first prototypes and designing new ones with different or enhanced storage materials and new reactor concepts to optimize energy output.

[1]  C. Kaps,et al.  Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2 , 2010 .

[2]  Yasuaki Kawai,et al.  Hydrogen adsorption and desorption by carbon materials , 2006 .

[3]  Ruzhu Wang,et al.  Experimental study on dynamic performance analysis of a flat-plate solar solid-adsorption refrigeration for ice maker , 2002 .

[4]  R. K. Akikur,et al.  A review of solar thermal refrigeration and cooling methods , 2013 .

[5]  Thomas Osterland,et al.  Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage , 2016 .

[6]  Thomas Schmidt,et al.  A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage , 2014 .

[7]  Matteo Chiesa,et al.  Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data , 2010 .

[8]  Ph. Grenier,et al.  Experimental Data on a Solar-Powered Ice Maker Using Activated Carbon and Methanol Adsorption Pair , 1987 .

[9]  A. Freni,et al.  Thermal conductivity of selective water sorbents under the working conditions of a sorption chiller , 2002 .

[10]  Yuri I. Aristov,et al.  Composite materials based on zeolite 4A for adsorption heat pumps , 1997 .

[11]  F. Meunier,et al.  Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles: Application to the Zeolite-water pair , 1985 .

[12]  Fabio Polonara,et al.  Simulation of a solid sorption ice-maker based on the novel composite sorbent "lithium chloride in silica gel pores" , 2009 .

[13]  Ruzhu Wang,et al.  Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology , 2001 .

[14]  Wang Li INFLUENCES OF HEAT AND MASS TRANSFER CHARACTERISTICS ON THE PERFORMANCE OF ADSORPTION ICE MAKER DRIVEN BY WASTE HEAT , 2003 .

[15]  Chris Bales,et al.  Combining thermal energy storage with buildings – a review , 2015 .

[16]  Ruzhu Wang,et al.  Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers , 2016 .

[17]  Todd Otanicar,et al.  Prospects for solar cooling – An economic and environmental assessment , 2012 .

[18]  A. Hauer,et al.  Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems , 2007 .

[19]  P. Webley,et al.  Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites , 2010 .

[20]  N. Adams,et al.  Adsorption on solids , 1974 .

[21]  M. Härkönen,et al.  Zeolite heat pump — adsorption of methanol in synthetic zeolites 13X, 4A and 5A , 1986 .

[22]  D. Van Hattem,et al.  Description and performance of an active solar cooling system, using a LiBrH2O absorption machine , 1981 .

[23]  W. Rivera,et al.  Experimental study of a thermo-chemical refrigerator using the barium chloride–ammonia reaction , 2007 .

[24]  Michael A. Lambert,et al.  Design of solar powered adsorption heat pump with ice storage , 2007 .

[25]  Zongchang Zhao,et al.  Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate , 2011 .

[26]  I. Eames,et al.  A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems , 1998 .

[27]  Agis M. Papadopoulos,et al.  Perspectives of solar cooling in view of the developments in the air-conditioning sector , 2003 .

[28]  Le Zhang,et al.  Design and testing of an automobile waste heat adsorption cooling system , 2000 .

[29]  Abdulmajeed A. Mohamad,et al.  A review on solar cold production through absorption technology , 2012 .

[30]  Manfred J. Horn,et al.  EVALUATION OF A ZEOLITE-WATER SOLAR ADSORPTION REFRIGERATOR , 2003 .

[31]  S. C. Kaushik,et al.  Theoretical analysis of LiBr/H2O absorption refrigeration systems , 2009 .

[32]  A. Al-Karaghouli,et al.  The solar energy research center building thermal performance evaluation during the summer season , 1991 .

[33]  Ruzhu Wang,et al.  Transient Analysis of a Chemisorption Air Conditioning System Operating under Different Kinds of Cycle , 2008 .

[34]  Jay Burch,et al.  Liquid Calcium Chloride Solar Storage: Concept and Analysis , 2011 .

[35]  H. Müller-Steinhagen,et al.  Central solar heating plants with seasonal storage in Germany , 2004 .

[36]  Zaizhong Xia,et al.  Design and performance prediction of a novel zeolite-water adsorption air conditioner , 2006 .

[37]  Adélio Rodrigues Gaspar,et al.  Review and future trends of solar adsorption refrigeration systems , 2014 .

[38]  Ruzhu Wang,et al.  An efficient solar-powered adsorption chiller and its application in low-temperature grain storage , 2007 .

[39]  Sam V. Shelton,et al.  Design and testing of a solid-sorption heat-pump system , 1996 .

[40]  B. Saha,et al.  Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 1. Adsorption characteristics , 2006 .

[41]  Ruzhu Wang,et al.  A review of promising candidate reactions for chemical heat storage , 2015 .

[42]  Benoît Y. Michel,et al.  Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications , 2014 .

[43]  Kun-Hong Lee,et al.  Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps. Part II. Cooling system using the composite blocks , 2000 .

[44]  Hans Müller-Steinhagen,et al.  Low temperature chemical heat storage - an investigation of hydration reactions , 2009 .

[45]  Li Yong,et al.  Technology development in the solar adsorption refrigeration systems , 2003 .

[46]  Nobuo Nakahara,et al.  Experimental study on house cooling and heating with solar energy using flat plate collector , 1977 .

[47]  Y. Kato,et al.  Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors , 2001 .

[48]  Marc A. Rosen,et al.  Closed and open thermochemical energy storage: Energy- and exergy-based comparisons , 2012 .

[49]  L. W. Wang,et al.  Experimental study of a novel CaCl2/expanded graphite-NH3 adsorption refrigerator , 2010 .

[50]  Francis Agyenim,et al.  Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store , 2010 .

[51]  P. Worsøe-Schmidt,et al.  A solar-powered solid-absorption refrigeration system☆ , 1979 .

[52]  Vincent Goetz,et al.  Energy storage comparison of sorption systems for cooling and refrigeration , 2002 .

[53]  Takao Kashiwagi,et al.  Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery , 2006, International Journal of Heat and Mass Transfer.

[54]  Melkon Tatlier,et al.  THE PERFORMANCE ANALYSIS OF A SOLAR ADSORPTION HEAT PUMP UTILIZING ZEOLITE COATINGS ON METAL SUPPORTS , 2000 .

[55]  Takao Kashiwagi,et al.  Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery , 2007 .

[56]  G. Cacciola,et al.  A family of new working materials for solid sorption air conditioning systems , 2002 .

[57]  Wang Dechang,et al.  Experimental study on the dynamic characteristics of adsorption heat pumps driven by intermittent heat source at heating mode , 2005 .

[58]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[59]  Saffa Riffat,et al.  The latest advancements on thermochemical heat storage systems , 2015 .

[60]  Ruzhu Wang,et al.  The performance of two adsorption ice making test units using activated carbon and a carbon composite as adsorbents , 2006 .

[61]  Ruzhu Wang,et al.  An energy efficient hybrid system of solar powered water heater and adsorption ice maker , 2000 .

[62]  A. Erdem-Senatalar,et al.  Effects of metal mass on the performance of adsorption heat pumps utilizing zeolite 4A coatings synthesized on heat exchanger tubes , 2000 .

[63]  George O.G. Löf,et al.  Design and construction of a residential solar heating and cooling system , 1975 .

[64]  Ying Li,et al.  Performance research of a micro-CCHP system with adsorption chiller , 2010 .

[65]  Ruzhu Wang,et al.  Study of the performance of activated carbon¿methanol adsorption systems concerning heat and mass transfer , 2003 .

[66]  Y. Hwang,et al.  Review of cold storage materials for air conditioning application , 2012 .

[67]  Ruzhu Wang,et al.  Experimental study on a continuous adsorption water chiller with novel design , 2005 .

[68]  E. Proverbio,et al.  Synthesis of thick zeolite 4A coatings on stainless steel , 2004 .

[69]  George O.G. Löf,et al.  Intergration of evacuated tubular solar collectors with lithium bromide absorption cooling systems , 1979 .

[70]  Carlos A. Infante Ferreira,et al.  Techno-economic review of solar cooling technologies based on location-specific data ☆ , 2014 .

[71]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[72]  M. Hiramatsu,et al.  Production of Cold Heat Energy by Alcohol/Activated Carbon Adsorption Heat Pump with a Disk-Module-Type Adsorber. , 1997 .

[73]  R. Wang,et al.  Research on a compact adsorption room air conditioner , 2006 .

[74]  M. Izquierdo,et al.  An innovative solar-driven directly air-cooled LiBr–H2O absorption chiller prototype for residential use , 2012 .

[75]  G. Xu,et al.  Theoretical analysis and optimization of a double-effect parallel-flow-type absorption chiller , 1997 .

[76]  Amenallah Guizani,et al.  Feasibility of solar absorption air conditioning in Tunisia , 2008 .

[77]  Dapeng Hu,et al.  Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair , 2011 .

[78]  Takao Kashiwagi,et al.  Modeling the performance of two-bed, sillica gel-water adsorption chillers , 1999 .

[79]  Takao Kashiwagi,et al.  Multi-bed regenerative adsorption chiller - improving the utilization of waste heat and reducing the chilled water outlet temperature fluctuation , 2001 .

[80]  M. Pons,et al.  Adsorptive machines with advanced cycles for heat pumping or cooling applications , 1999 .

[81]  Luigi Marletta,et al.  A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds , 2002 .

[82]  Luisa F. Cabeza,et al.  Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions , 2012 .

[83]  Rosenberg J. Romero,et al.  Dynamic study of the thermal behaviour of solar thermochemical refrigerator: barium chloride-ammonia for ice production , 2001 .

[84]  Graeme Maidment,et al.  A novel experimental investigation of a solar cooling system in Madrid , 2005 .

[85]  Ruzhu Wang,et al.  Experimental Results and Analysis for Adsorption Ice-Making System with Consolidated Adsorbent , 2003 .

[86]  Kim Choon Ng,et al.  Experimental investigation on activated carbon–ethanol pair for solar powered adsorption cooling applications , 2008 .

[87]  Zacharie Tamainot-Telto,et al.  Solar sorption refrigerator using a CPC collector , 1999 .

[88]  Ruzhu Wang,et al.  A review on adsorption working pairs for refrigeration , 2009 .

[89]  D. Boer,et al.  Performance of double effect absorption compression cycles for air-conditioning using methanol–TEGDME and TFE–TEGDME systems as working pairs , 1998 .

[90]  E. Hu A study of thermal decomposition of methanol in solar powered adsorption refrigeration systems , 1998 .

[91]  Peter Lamp,et al.  European research on solar-assisted air conditioning , 1998 .

[92]  J. J. Guilleminot,et al.  Solar Powered Solid Adsorption Cold Store , 1988 .

[93]  Reinhard Radermacher,et al.  Review of Solar Cooling Technologies , 2008 .

[94]  Ruzhu Wang,et al.  Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump , 2001 .

[95]  M. P. Maiya,et al.  Performance comparison of double-effect parallel-flow and series flow water–lithium bromide absorption systems , 2001 .

[96]  M. Hiramatsu,et al.  Equilibrium of NH4SCNNH3 system for thermal energy storage , 1987 .

[97]  Lingai Luo,et al.  Review of solar sorption refrigeration technologies: Development and applications , 2007 .

[98]  Lijun Wang,et al.  Heat Transfer Enhancement on the Adsorber of Adsorption Heat Pump , 1999 .

[99]  D. I. Tchernev,et al.  High-efficiency regenerative zeolite heat pump , 1988 .

[100]  Zacharie Tamainot-Telto,et al.  Optimal cycle selection in carbon-ammonia adsorption cycles , 2012 .

[101]  A. Erdem-Senatalar,et al.  The effects of thermal and mass diffusivities on the performance of adsorption heat pumps employing zeolite synthesized on metal supports , 1999 .

[102]  George O.G. Löf,et al.  The design and cost of optimized systems for residential heating and cooling by solar energy , 1974 .

[103]  Francis Meunier,et al.  Experimental Tests and Predictive Model of an Adsorptive Air Conditioning Unit , 1999 .

[104]  X. Py,et al.  The size of sorbents in low pressure sorption or thermochemical energy storage processes , 2014 .

[105]  Ruzhu Wang,et al.  Adsorption refrigeration- : An efficient way to make good use of waste heat and solar energy , 2006 .

[106]  Roberto Best,et al.  Solar refrigeration and cooling , 1999 .

[107]  Peng Hu,et al.  Analysis for composite zeolite/foam aluminum-water mass recovery adsorption refrigeration system driven by engine exhaust heat , 2009 .

[108]  Rosenberg J. Romero,et al.  Monomethylamine-water vapour absorption refrigeration system. , 2005 .

[109]  Tomas Nunez,et al.  Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications , 2007 .

[110]  Ming Li,et al.  Development of no valve solar ice maker , 2004 .

[111]  Wilfrido Rivera,et al.  Modeling of an intermittent solar absorption refrigeration system operating with ammonia–lithium nitrate mixture , 2003 .

[112]  N. M. Khattab A novel solar-powered adsorption refrigeration module , 2004 .

[113]  Takao Kashiwagi,et al.  Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller , 2003 .

[114]  Marc A. Rosen,et al.  Analysis of crystallization risk in double effect absorption refrigeration systems , 2011 .

[115]  Catherine Hildbrand,et al.  A new solar powered adsorption refrigerator with high performance , 2004 .

[116]  L. W. Wang,et al.  Influence of mass recovery on the performance of a heat pipe type ammonia sorption refrigeration system using CaCl2/activated carbon as compound adsorbent , 2008 .

[117]  C. A. Infante Ferreira,et al.  Solar refrigeration options – a state-of-the-art review , 2008 .

[118]  Yoshio Yoshizawa,et al.  Thermal analysis of a magnesium oxide/water chemical heat pump for cogeneration , 2001 .

[119]  Bidyut Baran Saha,et al.  Study on an activated carbon fiber–ethanol adsorption chiller: Part I – system description and modelling , 2007 .

[120]  S. Kaskel Metallorganische Gerüstverbindungen (MOFs) , 2010 .

[121]  Takao Kashiwagi,et al.  Parametric study of a two-stage adsorption chiller using re-heat - The effect of overall thermal conductance and adsorbent mass on system performance , 2006 .

[122]  E. Proverbio,et al.  Zeolite coated copper foams for heat pumping applications , 2006 .

[123]  Alberto Coronas,et al.  A basis for the development of new ammoniawatersodium hydroxide absorption chillers , 2009 .

[124]  Melkon Tatlier,et al.  Polymeric heat exchangers to increase the COP values of adsorption heat pumps utilizing zeolite coatings , 2004 .

[125]  R. E. Critoph,et al.  Evaluation of the performance of solid sorption refrigeration systems using carbon dioxide as refrigerant , 2006 .

[126]  M. Pons,et al.  Study of different internal vapour transports for adsorption cycles with heat regeneration , 1997 .

[127]  F. Gutiérrez,et al.  Behavior of a household absorption-diffusion refrigerator adapted to autonomous solar operation , 1988 .

[128]  Mahmudur Rahman,et al.  A numerical analysis of cooling water temperature of two-stage adsorption chiller along with different mass ratios , 2011 .

[129]  S. Henninger,et al.  Cycle stability of sorption materials and composites for the use in heat pumps and cooling machines , 2011 .

[130]  Ruzhu Wang,et al.  Study on heat and mass recovery in adsorption refrigeration cycles , 2001 .

[131]  M. Faraday On the condensation of several gases into liquids , 1833 .

[132]  Georgios A. Florides,et al.  Review of solar and low energy cooling technologies for buildings , 2002 .

[133]  Luisa F. Cabeza,et al.  State of the art on gas–solid thermochemical energy storage systems and reactors for building applications , 2015 .

[134]  Ha Herbert Zondag,et al.  First studies in reactor concepts for Thermochemical Storage , 2009 .

[135]  Luisa F. Cabeza,et al.  Corrosion of metals and salt hydrates used for thermochemical energy storage , 2015 .

[136]  Ruzhu Wang,et al.  Performance improvement of adsorption cooling by heat and mass recovery operation , 2001 .

[137]  Charles E. Wyman,et al.  A review of collector and energy storage technology for intermediate temperature applications , 1980 .

[138]  Hasan Demir,et al.  A review on adsorption heat pump: Problems and solutions , 2008 .

[139]  L. W. Wang,et al.  Sorption thermal storage for solar energy , 2013 .

[140]  Ming Qu,et al.  A review for research and new design options of solar absorption cooling systems , 2011 .

[141]  Vincent Goetz,et al.  Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems , 2006 .

[142]  S. Mauran,et al.  Heat and mass transfer in consolidated reacting beds for thermochemical systems , 1993 .

[143]  A. Frazzica,et al.  Adsorption Heat Storage: State-of-the-Art and Future Perspectives , 2018, Nanomaterials.

[144]  Manuel Romero,et al.  Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones , 2014 .

[145]  Stefan K. Henninger,et al.  Water Adsorption Characteristics of MIL‐101 for Heat‐Transformation Applications of MOFs , 2011 .

[146]  Bidyut Baran Saha,et al.  Study on adsorption of methanol onto carbon based adsorbents , 2009 .

[147]  Bernard Spinner,et al.  Thermodynamic techniques for the conceptual design of thermochemical refrigerators using two salt materials , 2002 .

[148]  Ruzhu Wang,et al.  Evaluation of the cooling performance of a consolidated expanded graphite–calcium chloride reactive bed for chemisorption icemaker , 2007 .

[149]  Alojz Poredoš,et al.  Influence of adsorption cycle limitations on the system performance , 2001 .

[150]  Alberto Coronas,et al.  Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs , 2001 .

[151]  L. S. Cornish,et al.  Performance of a solar-powered air conditioning system in Hong Kong , 1992 .

[152]  Paul Kohlenbach,et al.  Betriebsverhalten einer 10 kW Absorptions- kälteanlage für solare Kühlung , 2005 .

[153]  Ruzhu Wang,et al.  Simulation and economic analysis of a solar-powered adsorption refrigerator using an evacuated tube for thermal insulation , 2003 .

[154]  M. Groll Reaction beds for dry sorption machines , 1993 .

[155]  Yuri I. Aristov,et al.  Adsorption properties of composite materials (LiCl + LiBr)/silica , 2009 .

[156]  Ruzhu Wang,et al.  Performance study of a high efficient multifunction heat pipe type adsorption ice making system with novel mass and heat recovery processes , 2007 .

[157]  Ruzhu Wang,et al.  Progress in the development of solid–gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy , 2014 .

[158]  M. Thommes Physical Adsorption Characterization of Nanoporous Materials , 2010 .

[159]  Thorsten Miltkau,et al.  Dynamic modeling of the combined heat and mass transfer during the adsorption/desorption of water vapor into/from a zeolite layer of an adsorption heat pump , 2002 .

[160]  Renato Lazzarin,et al.  Solar cooling: PV or thermal? A thermodynamic and economical analysis , 2014 .

[161]  Takao Kashiwagi,et al.  Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller , 2006 .

[162]  Ruzhu Wang,et al.  A target‐oriented solid‐gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade , 2013 .

[163]  Yoshio Yoshizawa,et al.  Kinetic study of the hydration of magnesium oxide for a chemical heat pump , 1996 .

[164]  Ha Herbert Zondag,et al.  Characterization of Salt Hydrates for Compact Seasonal Thermochemical Storage , 2009 .

[165]  S. Renganarayanan,et al.  Experimental studies on HFC based two-stage half effect vapour absorption cooling system , 2006 .

[166]  F. Meunier,et al.  Solid sorption: An alternative to CFCs , 1993 .

[167]  F. Meunier,et al.  EXPERIMENTAL TEMPERATURE FRONTS FOR ADSORPTIVE HEAT PUMP APPLICATIONS , 1996 .

[168]  M. Pons,et al.  Accounting for the real properties of the heat transfer fluid in heat-regenerative adsorption cycles for refrigeration , 2000 .

[169]  Felix Ziegler,et al.  State of the art in sorption heat pumping and cooling technologies , 2002 .

[170]  M. Groll,et al.  Evaluation of metal hydride machines for heat pumping and cooling applications , 1999 .

[171]  R. E. Critoph,et al.  Thermophysical properties of monolithic carbon , 2000 .

[172]  R. Best,et al.  EXPERIEMNTAL STUDIES ON THE OPERATING CHARACTERISTICS OF AN AMMONIA-WATER ABSORPTION SYSTEM FOR SOLAR COOLING , 1990 .

[173]  Kim Choon Ng,et al.  Improved thermodynamic property fields of LiBr-H2O solution , 2000 .

[174]  Ruzhu Wang,et al.  Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine: choice of adsorption pair , 2004 .

[175]  Yuri I. Aristov,et al.  Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 3. Testing of “BaCl2/vermiculite” composite in a lab-scale adsorption chiller , 2010 .

[176]  Uli Jakob,et al.  Simulation and experimental investigation into diffusion absorption cooling machines for air-conditioning applications , 2008 .

[177]  Ruzhu Wang,et al.  Dynamic analysis of heat recovery process for a continuous heat recovery adsorption heat pump , 2002 .

[178]  Yu. I. Shanin,et al.  An installation for water cooling based on a metal hydride heat pump , 2002 .

[179]  Bernard Spinner,et al.  Thermodynamic based comparison of sorption systems for cooling and heat pumping , 1999 .

[180]  Akiyoshi Sakoda,et al.  FUNDAMENTAL STUDY ON SOLAR POWERED ADSORPTION COOLING SYSTEM , 1984 .

[181]  Derek K. Baker,et al.  Adsorption properties of a natural zeolite–water pair for use in adsorption cooling cycles , 2010 .

[182]  Reinhard Radermacher,et al.  Modeling of a solar powered absorption cycle for Abu Dhabi , 2012 .

[184]  Takao Kashiwagi,et al.  Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme , 2008 .

[185]  H. Henning,et al.  Characterisation and improvement of sorption materials with molecular modeling for the use in heat transformation applications , 2011 .

[186]  Yuri I. Aristov,et al.  Isothermal sorption characteristics of the BaCl2–NH3 pair in a vermiculite host matrix , 2007 .

[187]  A. Freni,et al.  Selective water sorbent for solid sorption chiller: experimental results and modelling , 2004 .

[188]  Long Jiang,et al.  Experimental investigation on a MnCl2–CaCl2–NH3 thermal energy storage system , 2016 .

[189]  Takao Kashiwagi,et al.  Solar/waste heat driven two-stage adsorption chiller: the prototype , 2001 .

[190]  Thermochemical storage using composite materials , 2008 .

[191]  D. Do,et al.  Adsorption analysis : equilibria and kinetics , 1998 .

[192]  L. Cabeza,et al.  Corrosion evaluation and prevention of reactor materials to contain thermochemical material for thermal energy storage , 2016 .

[193]  Kun-Hong Lee,et al.  Gas permeability of expanded graphite-metallic salt composite , 2001 .

[194]  V. Dorer,et al.  Long-term heat storage with NaOH , 2008 .

[195]  M. Tahat,et al.  Heat-pump/energy-store using silica gel and water as a working pair , 2001 .

[196]  Z. F Li,et al.  Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank , 2001 .

[197]  Rabah Gomri,et al.  Investigation of the potential of application of single effect and multiple effect absorption cooling systems , 2010 .

[198]  Semra Ülkü,et al.  Adsorption heat pumps , 1986 .

[199]  Ruzhu Wang,et al.  Comparison of the adsorption performance of compound adsorbent in a refrigeration cycle with and without mass recovery , 2006 .

[200]  Ruzhu Wang,et al.  Recent developments of refrigeration technology in fishing vessels , 2005 .

[201]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[202]  Jean-Philippe Praene,et al.  Simulation and experimental investigation of solar absorption cooling system in Reunion Island , 2011 .

[203]  Walter Mittelbach,et al.  Development of a Small-Capacity Adsorption System for Heating and Cooling Applications , 2006 .

[204]  A. Erdem-Senatalar,et al.  Optimization of the cycle durations of adsorption heat pumps employing zeolite coatings synthesized on metal supports , 2000 .

[205]  Hisham Ettouney,et al.  Water–zeolite adsorption heat pump combined with single effect evaporation desalination process , 2001 .

[206]  Ruzhu Wang,et al.  Performance Analysis of an Innovative Multimode, Multisalt and Multieffect Chemisorption Refrigeration System , 2007 .

[207]  L. W. Wang,et al.  Split heat pipe type compound adsorption ice making test unit for fishing boats , 2006 .

[208]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[209]  M. Mobedi,et al.  Adsorption in Energy Storage , 1989 .

[210]  Fredy Huaylla,et al.  IEA SHC Task 42 / ECES Annex 29 – Working Group B: Applications of Compact Thermal Energy Storage , 2016 .

[211]  R. Best,et al.  Experiments on an absorption refrigeration system powered by a solar pond , 1993 .

[212]  J. Blumenberg,et al.  Performance testing and evaluation of solid absorption solar cooling unit , 1997 .

[213]  H. Henning,et al.  Novel sorption materials for solar heating and cooling , 2012 .

[214]  R. E. Critoph Solid sorption cycles: A short history , 2012 .

[215]  Felix Ziegler,et al.  Sorption heat pumping technologies: Comparisons and challenges , 2009 .

[216]  Ruzhu Wang,et al.  Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy , 2013 .

[217]  Ruzhu Wang,et al.  Effective thermal conductivity of expanded graphite–CaCl2 composite adsorbent for chemical adsorption chillers , 2006 .

[218]  Ioan Sarbu,et al.  Review of solar refrigeration and cooling systems , 2013 .

[219]  S. Klein,et al.  Simulation of an absorption heat pump solar heating and cooling system , 1983 .

[220]  S. Kitagawa,et al.  Highly Porous and Stable Coordination Polymers as Water Sorption Materials , 2010 .

[221]  Belal Dawoud,et al.  A hybrid solar-assisted adsorption cooling unit for vaccine storage , 2007 .

[222]  Ruzhu Wang,et al.  Performance modeling and testing on a heat-regenerative adsorptive reversible heat pump , 2002 .

[223]  Chen‐Chia Huang,et al.  Hydrogen adsorption on modified activated carbon , 2010 .

[224]  Yuri I. Aristov,et al.  Composites ‘salt inside porous matrix’ for adsorption heat transformation: a current state-of-the-art and new trends , 2012 .

[225]  Kun-Hong Lee,et al.  Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks , 2000 .

[226]  S. F. Smeding,et al.  Waste heat driven silica gel/water adsorption cooling in trigeneration , 2010 .

[227]  Zine Aidoun,et al.  Salt impregnated carbon fibres as the reactive medium in a chemical heat pump: the NH3–CoCl2 system , 2002 .

[228]  G. Grossman Solar-powered systems for cooling, dehumidification and air-conditioning , 2002 .

[229]  Erich Hahne,et al.  Test and simulation of a solar-powered absorption cooling machine , 1997 .

[230]  Harald Drück,et al.  Concepts of long-term thermochemical energy storage for solar thermal applications – Selected examples , 2012 .

[231]  Takao Kashiwagi,et al.  Computational analysis of an advanced adsorption-refrigeration cycle , 1995 .

[232]  S. O. Enibe,et al.  Computer simulation of a CaCl2 solid-adsorption solar refrigerator , 1995 .

[233]  Yuri I. Aristov,et al.  Novel ammonia sorbents porous matrix modified by active salt for adsorptive heat transformation 1. Barium chloride in various matrices , 2010 .

[234]  Zacharie Tamainot-Telto,et al.  Adsorption refrigerator using monolithic carbon-ammonia pair , 1997 .

[235]  Ruzhu Wang,et al.  A combined double-way chemisorption refrigeration cycle based on adsorption and resorption processes , 2009 .

[236]  K. Ng,et al.  Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system , 2003 .

[237]  Ruzhu Wang,et al.  Study of a novel silica gel-water adsorption chiller. Part II. Experimental study , 2005 .

[238]  Takao Kashiwagi,et al.  INFLUENCE OF DESIGN AND OPERATING CONDITIONS ON THE SYSTEM PERFORMANCE OF A TWO-STAGE ADSORPTION CHILLER , 2004 .

[239]  S. Chungpaibulpatana,et al.  A review of absorption refrigeration technologies , 2001 .

[240]  Rosenberg J. Romero,et al.  Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide , 2001 .

[241]  Ioan Sarbu,et al.  General review of solar-powered closed sorption refrigeration systems , 2015 .

[242]  Syed A.M. Said,et al.  Alternative designs for a 24-h operating solar-powered absorption refrigeration technology , 2012 .

[243]  Hai-Ming Lai,et al.  An enhanced adsorption cycle operated by periodic reversal forced convection , 2000 .

[244]  R. E. Critoph Forced convection adsorption cycle with packed bed heat regeneration , 1999 .

[245]  G. C. Vliet,et al.  Water-lithium bromide double-effect absorption cooling analysis , 1980 .

[246]  Ruzhu Wang,et al.  Experimental studies on an air-cooled two-stage NH3-H2O solar absorption air-conditioning prototype , 2012 .

[247]  K. F. Fong,et al.  Advancement of solar desiccant cooling system for building use in subtropical Hong Kong , 2010 .

[248]  Daniel E. Fisher,et al.  Energetic, economic and environmental performance of a solar-thermal-assisted HVAC system , 2010 .

[249]  Kai Choong Leong,et al.  Numerical study of a combined heat and mass recovery adsorption cooling cycle , 2004 .

[250]  R. E. Critoph,et al.  A prototype of a fast cycle adsorption refrigerator utilizing a novel carbon—aluminium laminate , 2000 .

[251]  Ruzhu Wang,et al.  Compound adsorbent for adsorption ice maker on fishing boats , 2004 .

[252]  Ruzhu Wang,et al.  A conceptual design and performance analysis of a triple-effect solid–gas thermochemical sorption refrigeration system with internal heat recovery , 2009 .

[253]  Berhane H. Gebreslassie,et al.  Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect , 2010 .

[254]  J. K. Kiplagat,et al.  Study on a compact silica gel–water adsorption chiller without vacuum valves: Design and experimental study , 2010 .

[255]  Yoshio Yoshizawa,et al.  Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system , 2005 .

[256]  Ruzhu Wang,et al.  Performance analysis of an adsorption refrigerator using activated carbon in a compound adsorbent , 2006 .

[257]  Kim Choon Ng,et al.  Experiments for Measuring Adsorption Characteristics of an Activated Carbon Fiber/Ethanol Pair Using a Plate-Fin Heat Exchanger , 2006 .

[258]  M. Venegas,et al.  Crystallization as a limit to develop solar air-cooled LiBr–H2O absorption systems using low-grade heat , 2004 .

[259]  Takao Kashiwagi,et al.  Performance evaluation of a two-stage adsorption refrigeration cycle with different mass ratio , 2005 .

[260]  Francis Meunier,et al.  Experimental study of cascading adsorption cycles , 1989 .

[261]  J. J. Guilleminot,et al.  Design of an experimental solar-powered, solid-adsorption ice maker , 1986 .

[262]  Alessio Sapienza,et al.  Development and lab-test of a mobile adsorption air-conditioner , 2012 .

[263]  M. Gopal Experiments on a metal hydride cooling system working with ZrMnFe/MmNi4.5Al0.5 pairEtude d'un système de refroidissement à hydrure métallique utilisant un couple actif ZrMnFe/MmNi4,5Al0,5 , 1999 .

[264]  Avraham Shitzer,et al.  Computerized design and economic evaluation of an aqua-ammonia solar operated absorption system , 1982 .

[265]  Jaroslav Pátek,et al.  Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system , 1995 .

[266]  Zongchang Zhao,et al.  Thermodynamic properties of a new working pair: 1-Ethyl-3-methylimidazolium ethylsulfate and water , 2010 .

[267]  Ghosh,et al.  Development of an Advanced Solar-hybrid Adsorption Cooling System for Decentralized Storage of Agricultural Products in India. , 1997 .

[268]  George M. Lloyd,et al.  Compressor-driven metal-hydride heat pumps , 1997 .

[269]  Michael J Tierney,et al.  Options for solar-assisted refrigeration—Trough collectors and double-effect chillers , 2007 .

[270]  Z. F Li,et al.  Solar absorption cooling with low grade heat source — a strategy of development in South China , 2002 .

[271]  Ahmed Hamza H. Ali,et al.  A review on adsorption cooling systems with adsorbent carbon , 2012 .

[272]  Robert E. Critoph,et al.  Forced convection adsorption cycles , 1998 .

[273]  Robert E. Critoph,et al.  Specific cooling power intensification limits in ammonia–carbon adsorption refrigeration systems , 2004 .

[274]  Ruzhu Wang,et al.  Performance improvement of a combined double‐way thermochemical sorption refrigeration cycle with reheating process , 2009 .

[275]  Zacharie Tamainot-Telto,et al.  Advanced solid sorption air conditioning modules using monolithic carbon–ammonia pair , 2003 .

[276]  Ruzhu Wang,et al.  Practical experiments on an adsorption air conditioner powered by exhausted heat from a diesel locomotive , 2004 .

[277]  Ruzhu Wang,et al.  A new target-oriented methodology of decreasing the regeneration temperature of solid–gas thermochemical sorption refrigeration system driven by low-grade thermal energy , 2011 .

[278]  Zacharie Tamainot-Telto,et al.  Carbon-ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping , 2009 .

[279]  C. Janiak,et al.  MOFs for Use in Adsorption Heat Pump Processes , 2012 .

[280]  Lingai Luo,et al.  A review on long-term sorption solar energy storage , 2009 .

[281]  Yanzhi Xia,et al.  Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration , 2012 .

[282]  Ch. Trepp,et al.  Simulation of a solar driven aqua-ammonia absorption refrigeration system Part 2: viability for milk cooling at remote Brazilian dairy farms , 1987 .

[283]  Pierre Neveu,et al.  Solid-gas chemical heat pumps: Field of application and performance of the internal heat of reaction recovery process , 1993 .

[284]  Gang Li,et al.  Review of cold storage materials for subzero applications , 2013 .

[285]  R. E. Critoph,et al.  Review of trends in solid sorption refrigeration and heat pumping technology , 2005 .

[286]  Julien Berthiaud Procédé à sorption solide/gaz pour le transport de chaleur et de froid à longue distance , 2007 .

[287]  Jiujian Ni,et al.  Experimental research on refrigeration characteristics of a metal hydride heat pump in auto air-conditioning , 2007 .

[288]  Ruzhu Wang,et al.  Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats , 2008 .

[289]  Ruzhu Wang,et al.  Study of a novel silica gel-water adsorption chiller. Part I. Design and performance prediction , 2005 .

[290]  Giovanni Restuccia,et al.  A zeolite-coated bed for air conditioning adsorption systems: parametric study of heat and mass transfer by dynamic simulation , 2002 .

[291]  Chris Bales,et al.  TCA Evaluation Lab Measurements, Modelling and System Simulations , 2005 .

[292]  R. E. Critoph,et al.  Heat transfer in granular activated carbon beds in the presence of adsorbable gases , 1995 .

[293]  R. E. Critoph Rapid cycling solar/biomass powered adsorption refrigeration system , 1999 .

[294]  A. Erdem-Senatalar,et al.  When do thin zeolite layers and a large void volume in the adsorber limit the performance of adsorption heat pumps , 2002 .

[295]  Ping Li,et al.  Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads , 2010 .

[296]  Takao Kashiwagi,et al.  Experimental investigation of mass recovery adsorption refrigeration cycle , 2005 .

[297]  M. Mobedi,et al.  Comparison of Uniform and Non-uniform Pressure Approaches Used to Analyze an Adsorption Process in a Closed Type Adsorbent Bed , 2013, Transport in Porous Media.

[298]  J. Munson,et al.  Ethylene Glycol/Water as Working Fluids for an Experimental Absorption Cycle , 2007 .