Spanning trees on hypercubic lattices and nonorientable surfaces
暂无分享,去创建一个
[1] J. Cardy,et al. Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. , 1986, Physical review letters.
[2] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[3] D. Cvetkovic,et al. Spectra of Graphs: Theory and Applications , 1997 .
[4] Norman Biggs,et al. T = 0 partition functions for Potts antiferromagnets on square lattice strips with (twisted) periodic boundary conditions , 1999, cond-mat/0001407.
[5] Frank Harary,et al. Graph Theory , 2016 .
[6] H. Temperley. On the mutual cancellation of cluster integrals in Mayer's fugacity series , 1964 .
[7] F. Y. Wu. Number of spanning trees on a lattice , 1977 .
[8] C. Itzykson,et al. Conformal Invariance , 1987 .
[9] R. Guy,et al. On the Möbius Ladders , 1967, Canadian Mathematical Bulletin.
[10] F. Y. Wu,et al. Dimer statistics on the Möbius strip and the Klein bottle , 1999, cond-mat/9906154.