Methyl gallate nanomicelles impairs neutrophil accumulated in zymosan-induced arthritis.

[1]  H. Cridge,et al.  Lipases: it's not just pancreatic lipase! , 2022, American journal of veterinary research.

[2]  A. Rajabzadeh,et al.  Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology , 2022, EJNMMI Radiopharmacy and Chemistry.

[3]  Peng Liu,et al.  Methyl Gallate Improves Hyperuricemia Nephropathy Mice Through Inhibiting NLRP3 Pathway , 2021, Frontiers in Pharmacology.

[4]  S. Fukada,et al.  Protective effect of methyl gallate on murine antigen-induced arthritis by inhibiting inflammatory process and bone erosion , 2021, Inflammopharmacology.

[5]  Teng Liu,et al.  Biocompatible nanomicelles for sensitive detection and photodynamic therapy of early-stage cancer. , 2021, Biomaterials science.

[6]  Jie Huang,et al.  Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis , 2021, Frontiers in Immunology.

[7]  C. Bombardier,et al.  Health care costs of rheumatoid arthritis: A longitudinal population study , 2021, PloS one.

[8]  P. Wei,et al.  Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells , 2021, PloS one.

[9]  Prasun Patra,et al.  Nanomicelles: Types, properties and applications in drug delivery , 2021, IET nanobiotechnology.

[10]  Huijie Jiang,et al.  Novel Thermally Activated Delayed Fluorescence Nano-Micelle for Tumor Imaging. , 2021, Photodiagnosis and photodynamic therapy.

[11]  Sara S. M. Sayed,et al.  Effect of methyl gallate on immune response of Biomphalaria alexandrina (Ehrenberg, 1831) snails to infection with Schistosoma mansoni (Sambon, 1907) , 2021, Parasitology research.

[12]  Yong‐Ill Lee,et al.  Recent Advances in Nanomicelles Delivery Systems , 2020, Nanomaterials.

[13]  M. Bilal,et al.  Nanotechnology in ovarian cancer: Diagnosis and treatment. , 2020, Life sciences.

[14]  L. N. Seito,et al.  Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways , 2020, Inflammation Research.

[15]  Michael Ansong,et al.  Prodrugs and nanomicelles to overcome ocular barriers for drug penetration , 2020, Expert opinion on drug metabolism & toxicology.

[16]  J. Pope,et al.  Ocular Manifestations in Rheumatoid Arthritis, Connective Tissue Disease, and Vasculitis: A Systematic Review and Metaanalysis , 2020, The Journal of Rheumatology.

[17]  S. Schülke,et al.  Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis , 2020, Cells.

[18]  J. Cho,et al.  Antioxidant and Cytoprotective Effects of (−)-Epigallocatechin-3-(3″-O-methyl) Gallate , 2019, International journal of molecular sciences.

[19]  R. Santos-Oliveira,et al.  Technetium-99m metastable radiochemistry for pharmaceutical applications: old chemistry for new products , 2019, Journal of Coordination Chemistry.

[20]  C. Scirè,et al.  One year in review 2019: novelties in the treatment of rheumatoid arthritis. , 2019, Clinical and experimental rheumatology.

[21]  J. Bathon,et al.  Renal Manifestations of Rheumatoid Arthritis. , 2018, Rheumatic diseases clinics of North America.

[22]  D. Solomon,et al.  Medical Care Costs Associated With Rheumatoid Arthritis in the US: A Systematic Literature Review and Meta‐Analysis , 2018, Arthritis care & research.

[23]  S. Gorzalczany,et al.  Potential usefulness of methyl gallate in the treatment of experimental colitis , 2018, Inflammopharmacology.

[24]  T. Mikuls,et al.  State of the Art Review: Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications , 2018 .

[25]  J. Imboden,et al.  Neurologic Manifestations of Rheumatoid Arthritis. , 2017, Rheumatic diseases clinics of North America.

[26]  Leonardo Paredes Pires,et al.  Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system , 2017 .

[27]  N. Yawalkar,et al.  Skin Manifestations of Rheumatoid Arthritis, Juvenile Idiopathic Arthritis, and Spondyloarthritides , 2017, Clinical Reviews in Allergy & Immunology.

[28]  Ian D. McGilvray,et al.  Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[29]  I. Hussain,et al.  Hydrophilic nanoparticles packed in oral tablets can improve the plasma profile of short half-life hydrophobic drugs , 2016 .

[30]  L. N. Seito,et al.  Anti-inflammatory Effect of Methyl Gallate on Experimental Arthritis: Inhibition of Neutrophil Recruitment, Production of Inflammatory Mediators, and Activation of Macrophages. , 2016, Journal of natural products.

[31]  D. Tibboel,et al.  Pharmacokinetic considerations and recommendations in palliative care, with focus on morphine, midazolam and haloperidol , 2016, Expert opinion on drug metabolism & toxicology.

[32]  A. Concheiro,et al.  Encapsulation of Antioxidant Gallate Derivatives in Biocompatible Poly(ε-caprolactone)-b-Pluronic-b-Poly(ε-caprolactone) Micelles. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[33]  Hamidreza Ghandehari,et al.  Nanoparticle Uptake: The Phagocyte Problem. , 2015, Nano today.

[34]  A. Broome,et al.  Immunosuppressive nano-therapeutic micelles downregulate endothelial cell inflammation and immunogenicity. , 2015, RSC advances.

[35]  J. Solomon,et al.  Lung disease in rheumatoid arthritis. , 2015, Rheumatic diseases clinics of North America.

[36]  J. Xu,et al.  Alanine Aminotransferase-Old Biomarker and New Concept: A Review , 2014, International journal of medical sciences.

[37]  Stefan Tenzer,et al.  Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. , 2013, Nature nanotechnology.

[38]  A. Latifi,et al.  Prophylactic effects of methyl‐3‐O‐methyl gallate against sodium fluoride‐induced oxidative stress in erythrocytes in vivo , 2013, The Journal of pharmacy and pharmacology.

[39]  Yuzhen Wang,et al.  Intraperitoneal injection is not always a suitable alternative to intravenous injection for radiotherapy. , 2013, Cancer biotherapy & radiopharmaceuticals.

[40]  Bing Wang,et al.  Metabolism of nanomaterials in vivo: blood circulation and organ clearance. , 2013, Accounts of chemical research.

[41]  Jinoos Yazdany,et al.  Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice , 2012, Arthritis care & research.

[42]  Frederick Wolfe,et al.  Rheumatoid arthritis , 2010, The Lancet.

[43]  M. Feldmann,et al.  Anti-TNF Therapy, from Rationale to Standard of Care: What Lessons Has It Taught Us? , 2010, The Journal of Immunology.

[44]  S. Vallabhajosula,et al.  Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. , 2010, Seminars in nuclear medicine.

[45]  H. Birnbaum,et al.  Societal cost of rheumatoid arthritis patients in the US , 2010, Current medical research and opinion.

[46]  B. Aggarwal,et al.  Natural products as a gold mine for arthritis treatment. , 2007, Current opinion in pharmacology.

[47]  J. Keller,et al.  Human pancreatic exocrine response to nutrients in health and disease , 2005, Gut.

[48]  H. McLeod,et al.  Pharmacokinetics for the prescriber , 2003, Medicine.

[49]  J. Whitfield Gamma Glutamyl Transferase , 2001, Critical reviews in clinical laboratory sciences.

[50]  M. Flessner,et al.  Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. , 1997, Journal of the National Cancer Institute.

[51]  R. Meenan,et al.  The Costs of Rheumatoid Arthritis , 1994, PharmacoEconomics.

[52]  Raveendhara R. Bannuru,et al.  American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis , 2015 .

[53]  G. Nahler first-pass effect , 2009 .

[54]  M. Petrichev SOME IMPORTANT BIOCHEMICAL PARAMETERS IN CLINICAL VETERINARY TOXICOLOGY , 2022 .