Evolving Combinatorial Problem Instances That Are Difficult to Solve

This paper demonstrates how evolutionary computation can be used to acquire difficult to solve combinatorial problem instances. As a result of this technique, the corresponding algorithms used to solve these instances are stress-tested. The technique is applied in three important domains of combinatorial optimisation, binary constraint satisfaction, Boolean satisfiability, and the travelling salesman problem. The problem instances acquired through this technique are more difficult than the ones found in popular benchmarks. In this paper, these evolved instances are analysed with the aim to explain their difficulty in terms of structural properties, thereby exposing the weaknesses of corresponding algorithms.

[1]  J. I. van Hemert Evolving binary constraint satisfaction problem instances that are difficult to solve , 2003 .

[2]  Rina Dechter,et al.  Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition , 1990, Artif. Intell..

[3]  Patrick Prosser,et al.  An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[4]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.

[5]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[6]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[7]  D. Corneil,et al.  Efficient cluster compensation for lin-kernighan heuristics , 1999 .

[8]  Solomon W. Golomb,et al.  Backtrack Programming , 1965, JACM.

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[11]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[12]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[13]  Elizabeth M. Rudnick,et al.  Sequential Circuit Test Generation in a Genetic Algorithm Framework , 1994, 31st Design Automation Conference.

[14]  Toby Walsh,et al.  The Constrainedness of Search , 1996, AAAI/IAAI, Vol. 1.

[15]  A. Beacham The Complexity of Problems Without Backbones , 2000 .

[16]  Charles J. Petrie,et al.  On the Equivalence of Constraint Satisfaction Problems , 1990, ECAI.

[17]  Cristopher Moore,et al.  Hiding Satisfying Assignments: Two Are Better than One , 2004, AAAI.

[18]  Peter van Beek,et al.  On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems , 1998, AAAI/IAAI.

[19]  Tad Hogg,et al.  A New Look at the Easy-Hard-Easy Pattern of Combinatorial Search Difficulty , 1997, J. Artif. Intell. Res..

[20]  Toby Walsh,et al.  Backbones in Optimization and Approximation , 2001, IJCAI.

[21]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[22]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[23]  William J. Cook,et al.  Finding Tours in the TSP , 1999 .

[24]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[25]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[26]  Panos M. Pardalos,et al.  Satisfiability Problem: Theory and Applications , 1997 .

[27]  Tad Hogg,et al.  Exploiting the Deep Structure of Constraint Problems , 1994, Artif. Intell..

[28]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[29]  Roberto J. Bayardo,et al.  Counting Models Using Connected Components , 2000, AAAI/IAAI.

[30]  Alan Smaill,et al.  Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..

[31]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[32]  Christos H. Papadimitriou,et al.  The Complexity of the Lin-Kernighan Heuristic for the Traveling Salesman Problem , 1992, SIAM J. Comput..

[33]  Toby Walsh,et al.  The Satisfiability Constraint Gap , 1996, Artif. Intell..

[34]  Barbara M. Smith,et al.  The Phase Transition and the Mushy Region in Constraint Satisfaction Problems , 1994, ECAI.

[35]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.

[36]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[37]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[38]  Peter van Beek,et al.  On the conversion between non-binary constraint satisfaction problems , 1998, AAAI 1998.

[39]  Jozef Kratica,et al.  A Genetic Algorithm for the Index Selection Problem , 2003, EvoWorkshops.

[40]  Toby Walsh,et al.  SAT v CSP , 2000, CP.

[41]  Jano I. van Hemert,et al.  Property Analysis of Symmetric Travelling Salesman Problem Instances Acquired Through Evolution , 2005, EvoCOP.

[42]  Ian P. Gent,et al.  Well out of reach: Why hard problems are hard , 1999 .

[43]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[44]  Toby Walsh,et al.  An Empirical Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem , 1996, CP.

[45]  Pablo Moscato,et al.  A mixed evolutionary-statistical analysis of an algorithm's complexity , 2003, Appl. Math. Lett..

[46]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[47]  Patrick Prosser,et al.  Binary Constraint Satisfaction Problems: Some are Harder than Others , 1994, ECAI.

[48]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[49]  Jano I. van Hemert,et al.  Phase Transition Properties of Clustered Travelling Salesman Problem Instances Generated with Evolutionary Computation , 2004, PPSN.

[50]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[51]  Lalit M. Patnaik,et al.  A Simulation-Based Test Generation Scheme Using Genetic Algorithms , 1993, The Sixth International Conference on VLSI Design.

[52]  Bart Selman,et al.  Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.

[53]  Giovanni Squillero,et al.  Automatic test program generation: a case study , 2004, IEEE Design & Test of Computers.

[54]  Brian Hayes,et al.  CAN’T GET NO SATISFACTION , 1997 .

[55]  Barbara M. Smith,et al.  Modelling Exceptionally Hard Constraint Satisfaction Problems , 1997, CP.

[56]  David S. Johnson,et al.  8. The traveling salesman problem: a case study , 2003 .

[57]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[58]  Forschungsinstitut für Diskrete Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003 .

[59]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[60]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[61]  Alvin C. M. Kwan,et al.  Predicting Phase Transitions of Binary Constraint Satisfaction Problems with Constraint Graph Information , 1998, Intell. Data Anal..

[62]  S. S. Sengupta,et al.  The traveling salesman problem , 1961 .

[63]  J. K. Lenstra,et al.  Complexity of vehicle routing and scheduling problems , 1981, Networks.

[64]  Kenneth Steiglitz,et al.  Some complexity results for the Traveling Salesman Problem , 1976, STOC '76.

[65]  Toby Walsh,et al.  Backbones and Backdoors in Satisfiability , 2005, AAAI.

[66]  Daniel G. Saab,et al.  CRIS: a test cultivation program for sequential VLSI circuits , 1992, ICCAD.

[67]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).