Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering
暂无分享,去创建一个
Simo Särkkä | Heikki Haario | Isambi S. Mbalawata | H. Haario | S. Särkkä | I. Mbalawata | Simo Särkkä
[1] Yacine Aït-Sahalia. Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .
[2] Simo Särkkä,et al. Recursive Bayesian inference on stochastic differential equations , 2006 .
[3] Hermann Singer. Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms , 2011 .
[4] P. Fearnhead,et al. Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .
[5] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[6] Darren J. Wilkinson,et al. Bayesian sequential inference for nonlinear multivariate diffusions , 2006, Stat. Comput..
[7] Darren J. Wilkinson,et al. Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..
[8] Jerry Nedelman,et al. Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..
[9] Ola Elerian,et al. A note on the existence of a closed form conditional transition density for the Milstein scheme , 1998 .
[10] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[11] A. Pedersen. A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations , 1995 .
[12] Mohinder S. Grewal,et al. Kalman Filtering: Theory and Practice Using MATLAB , 2001 .
[13] Lingyu Chen,et al. Exploring Hybrid Monte Carlo in Bayesian Computation , 2000 .
[14] Jouko Lampinen,et al. Rao-Blackwellized particle filter for multiple target tracking , 2007, Inf. Fusion.
[15] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[16] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[17] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[18] Rolf Poulsen,et al. Transition Densities of Diffusion Processes , 2002 .
[19] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[20] N. Shephard,et al. Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .
[21] Jan Nygaard Nielsen,et al. Parameter estimation in stochastic differential equations: An overview , 2000 .
[22] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[23] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[24] Timothy F. Havel,et al. Derivatives of the Matrix Exponential and Their Computation , 1995 .
[25] Bjørn Eraker. MCMC Analysis of Diffusion Models With Application to Finance , 2001 .
[26] O. Stramer,et al. Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach , 2011 .
[27] K. Lindsay,et al. Estimating the parameters of stochastic differential equations , 1999 .
[28] R. Carroll,et al. Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples , 2010 .
[29] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[30] Simo Särkkä,et al. On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..
[31] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[32] Hermann Singer. Parameter Estimation of Nonlinear Stochastic Differential Equations: Simulated Maximum Likelihood versus Extended Kalman Filter and Itô-Taylor Expansion , 2002 .
[33] Christopher S. Jones,et al. A Simple Bayesian Method for the Analysis of Diffusion Processes , 1998 .
[34] J. Butcher. Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .
[35] Hermann Singer. A survey of estimation methods for stochastic differential equastions , 2004 .
[36] Yacine Aït-Sahalia. Closed-Form Likelihood Expansions for Multivariate Diffusions , 2008 .
[37] Stan Hurn,et al. On the Efficacy of Simulated Maximum Likelihood for Estimating the Parameters of Stochastic Differential Equation , 2003 .
[38] Peter Young,et al. Parameter estimation for continuous-time models - A survey , 1979, Autom..
[39] Paul Schneider,et al. Bayesian inference for discretely sampled Markov processes with closed-form likelihood expansions , 2010 .
[40] Tohru Ozaki,et al. Estimation for nonlinear stochastic differential equations by a local linearization method 1 , 1998 .
[41] G. Roberts,et al. Monte Carlo Maximum Likelihood Estimation for Discretely Observed Diffusion Processes , 2009, 0903.0290.
[42] G. Uhlenbeck,et al. On the Theory of the Brownian Motion , 1930 .
[43] J. Jeisman. Estimation of the parameters of stochastic differential equations , 2006 .
[44] Sebastian Reich,et al. Explicit variable step-size and time-reversible integration , 2001 .
[45] Hai-Xiang Lin,et al. Probability density estimation in stochastic environmental models using reverse representations , 2003 .
[46] Brett Ninness,et al. Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..
[47] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[48] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[49] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[50] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[51] J. Butcher. Numerical methods for ordinary differential equations , 2003 .
[52] Christopher M. Bishop,et al. Neural networks for pattern recognition , 1995 .
[53] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[54] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[55] H. Sørensen. Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey , 2004 .
[56] Michael W. Brandt,et al. Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets , 2001 .