Gardens of Eden and amenability on cellular automata
暂无分享,去创建一个
[1] G. Elek. The amenability and non-amenability of skew fields , 2003, math/0311375.
[2] Tullio Ceccherini-Silberstein,et al. Amenable groups and cellular automata , 1999 .
[3] L. Mirsky. Transversal Theory; An Account of Some Aspects of Combinatorial Mathematics , 2012 .
[4] Paul E. Schupp. Arrays, Automata and Groups: Some Interconnections , 1986, Automata Networks.
[5] Filippo Mignosi,et al. Garden of Eden Configurations for Cellular Automata on Cayley Graphs of Groups , 1993, SIAM J. Discret. Math..
[6] Imre Leader,et al. A Conjecture Concerning a Limit of Non-Cayley Graphs , 2001 .
[7] Tullio Ceccherini-Silberstein,et al. The Garden of Eden theorem for linear cellular automata , 2006, Ergodic Theory and Dynamical Systems.
[8] E. F. Moore. Machine Models of Self-Reproduction , 1962 .
[9] Misha Gromov,et al. Endomorphisms of symbolic algebraic varieties , 1999 .
[10] Tom Meyerovitch,et al. Finite entropy for multidimensional cellular automata , 2008, Ergodic Theory and Dynamical Systems.
[11] Ethan M. Coven,et al. Endomorphisms of irreducible subshifts of finite type , 2005, Mathematical systems theory.
[12] J. Myhill. The converse of Moore’s Garden-of-Eden theorem , 1963 .
[13] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[14] J. Neumann. Zur allgemeinen Theorie des Masses , 1929 .