Chapter 3 – Structure

Structure is the narrative strategy that has dominated thinking and writing about script for the past twenty years. My goal in this chapter is neither to support nor attack those notions that have held sway in the universities and in the profession. Rather, I acknowledge structure as a critical narrative strategy, as I pointed out in Chapter 1, “The Basics.” In this chapter and in Chapter 4, I will explicate this endlessly fascinating but all-too-mysterious strategy and set it in the context of an important set of choices for the writer.

[1]  Baran,et al.  Electron-spin-resonance study of electron properties in nitrogen and carbon austenites. , 1993, Physical review. B, Condensed matter.

[2]  V. Gavriljuk,et al.  Nitrogen partitioning between matrix, grain boundaries and precipitates in high-alloyed austenitic steels , 1999 .

[3]  Y. Petrov On the carbon distribution at structural imperfections in manganese austenite , 1993 .

[4]  J. Dora,et al.  NUCLEATION OF KINK PAIRS AND THE PEIERLS' MECHANISM OF PLASTIC DEFORMATION , 1963 .

[5]  M. Grujicic The effect of nitrogen on the structure and mobility of dislocations in Fe-Ni-Cr austenite , 1995, Journal of Materials Science.

[6]  R. Nakkalil,et al.  Formation of adiabatic shear bands in eutectoid steels in high strain rate compression , 1991 .

[7]  V. Gavriljuk,et al.  Low temperature ageing of the freshly formed Fe-C and Fe-N martensites , 2000 .

[8]  E. Werner Solid solution and grain size hardening of nitrogen-alloyed austenitic steels , 1988 .

[9]  M. Grujicic,et al.  Models of short-range order in a face-centered cubic Fe-Ni-Cr alloy with a high concentration of nitrogen , 1995 .

[10]  H. Kestenbach The effect of applied stress on partial dislocation separation and dislocation substructure in austenitic stainless steel , 1977 .

[11]  V. Gavriljuk,et al.  CC interaction in iron-base austenite and interpretation of Mössbauer spectra , 1997 .

[12]  V. Gavriljuk,et al.  High nitrogen steels , 1999 .

[13]  P. Müllner On the ductile to brittle transition in austenitic steel , 1997 .

[14]  A. Cottrell,et al.  Dislocation Theory of Yielding and Strain Ageing of Iron , 1949 .

[15]  N. Okuma,et al.  Evidence of Copious Vacancy Formation in Ni and Pd under a High Hydrogen Pressure , 1993 .

[16]  Ch. Crussard,et al.  Contribution à l’étude des transformations des austénites à 12 % Mn , 1957 .

[17]  V. Gavriljuk,et al.  Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels , 1998 .

[18]  R. Mclellan The thermodynamics of interstitial-vacancy interactions in solid solutions , 1988 .

[19]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[20]  M. O. Speidel,et al.  Brittle fracture in austenitic steel , 1994 .

[21]  V. Gavriljuk,et al.  On the correlation between electron structure and short range atomic order in iron-based alloys , 2000 .

[22]  S. Degallaix,et al.  Mechanical behaviour of high-nitrogen stainless steels , 1986 .

[23]  Y. Tomota,et al.  Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels , 1998 .

[24]  V. Gavriljuk,et al.  N–N interaction and nitrogen activity in the iron base austenite , 1999 .

[25]  V. Gavriljuk,et al.  Grain Boundary Strengthening in Austenitic Nitrogen Steels , 1999 .

[26]  M. O. Speidel,et al.  Second order twinning in austenitic steel , 1994 .

[27]  V. Gavriljuk,et al.  Hydrogen-induced equilibrium vacancies in FCC iron-base alloys , 1996 .

[28]  B. Obst Basic aspects of tensile properties , 1998 .

[29]  K. Kurzydłowski,et al.  The effects of nitrogen content and twin boundaries on the yield strength of various commercial heats of type 316 austenitic stainless steel , 1988 .

[30]  J. Grosskreutz strengthening and fracture in fatigue (approaches for achieving high fatigue strength) , 1972 .

[31]  D. Edmonds,et al.  Martensite and deformation twinning in austenitic steels , 1999 .

[32]  J. A. Venables,et al.  The martensite transformation in stainless steel , 1962 .

[33]  Y. Mahajan,et al.  Grain boundaries, stress gradients and fatigue crack initiation , 1976 .

[34]  B. Kear,et al.  The dependence of the width of a dissociated dislocation on dislocation velocity , 1968 .

[35]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[36]  K. Gall,et al.  On the deformation mechanisms in single crystal hadfield manganese steels , 1998 .

[37]  M. Grujicic,et al.  Nitrogen strengthening of a stable austenitic stainless steel , 1987 .

[38]  R. E. Schramm,et al.  Stacking fault energies of seven commercial austenitic stainless steels , 1975 .

[39]  J. Rawers High carbon–nitrogen iron alloys , 1999 .

[40]  A. E. Pogorelov,et al.  Mass transfer mechanism in real crystals by pulsed laser irradiation , 2002 .

[41]  V. Gavriljuk,et al.  Mössbauer study and thermodynamic modeling of Fe–C–N alloy , 2000 .

[42]  Y. Tomota,et al.  Work-hardening Behavior and Evolution of Dislocation-microstructures in High-nitrogen Bearing Austenitic Steels , 1998 .

[43]  A. Ruff Measurement of stacking fault energy from dislocation interactions , 1970, Metallurgical and Materials Transactions B.

[44]  V. Gavriljuk,et al.  The influence of substitutional atoms upon the electron structure of the iron-based transition metal alloys , 1998 .

[45]  A. Seeger The temperature dependence of the critical shear stress and of work-hardening of metal crystals , 1954 .