Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering

The Hox gene cluster has been a major focus in evolutionary developmental biology. This is because of its key role in patterning animal development and widespread examples of changes in Hox genes being linked to the evolution of animal body plans and morphologies. Also, the distinctive organisation of the Hox genes into genomic clusters in which the order of the genes along the chromosome corresponds to the order of their activity along the embryo, or during a developmental process, has been a further source of great interest. This is known as Colinearity, and it provides a clear link between genome organisation and the regulation of genes during development, with distinctive changes marking evolutionary transitions. The Hox genes are not alone, however. The homeobox genes are a large super-class, of which the Hox genes are only a small subset, and an ever-increasing number of further gene clusters besides the Hox are being discovered. This is of great interest because of the potential for such gene clusters to help understand major evolutionary transitions, both in terms of changes to development and morphology as well as evolution of genome organisation. However, there is uncertainty in our understanding of homeobox gene cluster evolution at present. This relates to our still rudimentary understanding of the dynamics of genome rearrangements and evolution over the evolutionary timescales being considered when we compare lineages from across the animal kingdom. A major goal is to deduce whether particular instances of clustering are primary (conserved from ancient ancestral clusters) or secondary (reassortment of genes into clusters in lineage-specific fashion). The following summary of the various instances of homeobox gene clusters in animals, and the hypotheses about their evolution, provides a framework for the future resolution of this uncertainty.

[1]  D. Duboule,et al.  Control of Hoxd genes' collinearity during early limb development. , 2006, Developmental cell.

[2]  Denis Duboule,et al.  The rise and fall of Hox gene clusters , 2007, Development.

[3]  Eric R. Pianka,et al.  Convergent evolution. , 1969, Journal of neurophysiology.

[4]  B. Degnan,et al.  Genesis and expansion of metazoan transcription factor gene classes. , 2008, Molecular biology and evolution.

[5]  Peter W. H. Holland,et al.  Ancient origin of the Hox gene cluster , 2001, Nature Reviews Genetics.

[6]  D. Ferrier The origin of the Hox/ParaHox genes, the Ghost Locus hypothesis and the complexity of the first animal. , 2016, Briefings in functional genomics.

[7]  P. Holland,et al.  Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae , 2008, Development Genes and Evolution.

[8]  D. Duboule,et al.  Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain , 2015, Proceedings of the National Academy of Sciences.

[9]  R. Axelrod,et al.  Evolutionary Dynamics , 2004 .

[10]  A. Coulson,et al.  Dispersal of NK homeobox gene clusters in amphioxus and humans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. J. Robinson,et al.  An Integrative Breakage Model of genome architecture, reshuffling and evolution , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  P. Holland,et al.  Evidence for 14 homeobox gene clusters in human genome ancestry , 2000, Current Biology.

[13]  David E. K. Ferrier Evolution of Hox complexes. , 2010, Advances in experimental medicine and biology.

[14]  D. Ferrier Evolution of the Hox Gene Cluster , 2012 .

[15]  Krishanu Mukherjee,et al.  Comprehensive Analysis of Animal TALE Homeobox Genes: New Conserved Motifs and Cases of Accelerated Evolution , 2007, Journal of Molecular Evolution.

[16]  Paola Bovolenta,et al.  Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders , 2015, Proceedings of the National Academy of Sciences.

[17]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[18]  Rafael D. Rosengarten,et al.  The Early ANTP Gene Repertoire: Insights from the Placozoan Genome , 2008, PloS one.

[19]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[20]  J. Finnerty,et al.  A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and Protostomia , 2010, EvoDevo.

[21]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[22]  Karl R. Wotton,et al.  Conservation of gene linkage in dispersed vertebrate NK homeobox clusters , 2009, Development Genes and Evolution.

[23]  P. Holland,et al.  Evolution of homeobox genes , 2013, Wiley interdisciplinary reviews. Developmental biology.

[24]  P. Lopez,et al.  Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes , 2007, Evolution & development.

[25]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[26]  P. Holland,et al.  The urbilaterian Super-Hox cluster. , 2008, Trends in genetics : TIG.

[27]  D. Ferrier Evolving Pathways Key Themes in Evolutionary Developmental Biology: When is a Hox gene not a Hox gene? The importance of gene nomenclature , 2008 .

[28]  B. Degnan,et al.  The NK Homeobox Gene Cluster Predates the Origin of Hox Genes , 2007, Current Biology.

[29]  P. Holland,et al.  HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology , 2011, Evolution & development.

[30]  B. Degnan,et al.  Early evolution of the LIM homeobox gene family , 2010, BMC Biology.

[31]  Matthew W. Brown,et al.  The Capsaspora genome reveals a complex unicellular prehistory of animals , 2013, Nature Communications.

[32]  P. Holland,et al.  Chromosomal mapping of ANTP class homeobox genes in amphioxus: piecing together ancestral genomes , 2003, Evolution & development.

[33]  D. Ferrier,et al.  Mechanisms of Gene Duplication and Translocation and Progress towards Understanding Their Relative Contributions to Animal Genome Evolution , 2012, International journal of evolutionary biology.

[34]  M. Levine,et al.  Evolving enhancer-promoter interactions within the tinman complex of the flour beetle, Tribolium castaneum , 2009, Development.

[35]  N. M. Brooke,et al.  The Mnx homeobox gene class defined by HB9, MNR2 and amphioxus AmphiMnx , 2001, Development Genes and Evolution.

[36]  M. Frasch,et al.  A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  Thomas R. Bürglin,et al.  A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes , 2009, Molecular biology and evolution.

[38]  Nicholas H. Putnam,et al.  Insights into bilaterian evolution from three spiralian genomes , 2012, Nature.

[39]  Frédéric Delsuc,et al.  Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate , 2010, Science.

[40]  V. Corces,et al.  Architectural proteins: regulators of 3D genome organization in cell fate. , 2014, Trends in cell biology.

[41]  R. Maeda,et al.  The open for business model of the bithorax complex in Drosophila , 2015, Chromosoma.

[42]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[43]  Tetsuro Ikuta,et al.  Evolution of Invertebrate Deuterostomes and Hox/ParaHox Genes , 2011, Genom. Proteom. Bioinform..

[44]  P. Holland,et al.  Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression , 2010, Proceedings of the Royal Society B: Biological Sciences.

[45]  G. Balavoine,et al.  Hox clusters and bilaterian phylogeny. , 2002, Molecular phylogenetics and evolution.

[46]  D. Ferrier,et al.  Evolution of the Hox/ParaHox gene clusters. , 2003, The International journal of developmental biology.

[47]  David E.K. Ferrier,et al.  Hox genes are not always Colinear , 2006, International journal of biological sciences.

[48]  P. Bork,et al.  Quantification of insect genome divergence. , 2007, Trends in genetics : TIG.

[49]  J. Collado-Vides,et al.  Transcriptional regulation constrains the organization of genes on eukaryotic chromosomes , 2008, Proceedings of the National Academy of Sciences.

[50]  M. Friedrich Evo‐Devo gene toolkit update: at least seven Pax transcription factor subfamilies in the last common ancestor of bilaterian animals , 2015, Evolution & development.

[51]  S. Saran,et al.  Classification and expression analyses of homeobox genes from Dictyostelium discoideum , 2015, Journal of Biosciences.

[52]  Elspeth A Bruford,et al.  Classification and nomenclature of all human homeobox genes , 2007, BMC Biology.

[53]  A. Sebé-Pedrós,et al.  Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages , 2013, Proceedings of the National Academy of Sciences.

[54]  D. Ferrier,et al.  Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes , 2014, Nature.

[55]  P. Holland,et al.  Extensive chordate and annelid macrosynteny reveals ancestral homeobox gene organization. , 2012, Molecular biology and evolution.

[56]  Hunter B. Fraser,et al.  Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints , 2012, Genome research.

[57]  B Franz Lang,et al.  Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. , 2011, Molecular biology and evolution.

[58]  G. Richards,et al.  Early evolution of metazoan transcription factors. , 2009, Current opinion in genetics & development.

[59]  Jordi Garcia-Fernàndez,et al.  The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.

[60]  R. Garrett,et al.  Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2 , 2013, Nucleic acids research.

[61]  B. Schierwater,et al.  Ancient linkage of a POU class 6 and an anterior Hox-like gene in cnidaria: implications for the evolution of homeobox genes. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[62]  U. Schmidt-Ott,et al.  Hox3/zen and the evolution of extraembryonic epithelia in insects. , 2010, Advances in experimental medicine and biology.

[63]  A. Laughon,et al.  Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding proteins , 1984, Nature.

[64]  Galina A. Erikson,et al.  The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima , 2014, PLoS biology.

[65]  J. Mullikin,et al.  The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis , 2006, Genome Biology.

[66]  P. Holland,et al.  Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. , 2002, Molecular phylogenetics and evolution.

[67]  P. Holland,et al.  HomeoDB: a database of homeobox gene diversity , 2008, Evolution & development.

[68]  David H. Tran,et al.  An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. , 2012, Genome research.

[69]  J. Garcia-Fernández,et al.  Convergent evolution of clustering of Iroquois homeobox genes across metazoans. , 2008, Molecular biology and evolution.

[70]  C. Pál,et al.  The evolutionary dynamics of eukaryotic gene order , 2004, Nature Reviews Genetics.

[71]  Pierre Kerner,et al.  Evolutionary history of the iroquois/Irx genes in metazoans , 2009, BMC Evolutionary Biology.

[72]  Ales Vancura,et al.  Transcriptional Regulation , 2012, Methods in Molecular Biology.

[73]  K. Howe,et al.  Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. , 2007, Genome research.

[74]  J. Ranz,et al.  Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila , 2015, Nature Communications.

[75]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[76]  M. Scott A rational nomenclature for vertebrate homeobox (HOX) genes. , 1993, Nucleic acids research.

[77]  Gené,et al.  Hemichordate genomes and deuterostome origins , 2016 .