Finite element analysis for general elastic multi-structures

A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.

[1]  Zhong-Ci Shi,et al.  Convergence of the TRUNC plate element , 1987 .

[2]  A mathematical model of coupled plates and its finite element method , 1992 .

[3]  Friedrich Stummel,et al.  The Generalized Patch Test , 1979 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[6]  Jianguo Huang,et al.  Numerical solution of the elastic body-plate problem by nonoverlapping domain decomposition type techniques , 2004, Math. Comput..

[7]  Susanne C. Brenner,et al.  A two-level additive Schwarz preconditioner for nonconforming plate elements , 1996 .

[8]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[9]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[10]  S. C. Brenner,et al.  POINCAR´ E-FRIEDRICHS INEQUALITIES FOR PIECEWISE H 1 FUNCTIONS ∗ , 2003 .

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  Zh,et al.  SUBSTRUCTURE PRECONDITIONERS FOR NONCONFORMING PLATE ELEMENTS , 1998 .

[13]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[14]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[15]  Jianguo Huang,et al.  On mortar-type Morley element method for plate bending problem , 2001 .

[16]  Huang Jian-guo,et al.  Some studies on mathematical models for general elastic multi-structures , 2005 .

[17]  Alexander Movchan,et al.  Asymptotic Analysis of Fields in Multi-Structures , 1999 .

[18]  Frédéric d'Hennezel Domain decomposition method and elastic multi-structures: The stiffened plate problem , 1993 .

[19]  An analysis of the TRUNC element for coupled plates with rigid junction , 1995 .

[20]  J. Bruch,et al.  Studies of an interface relaxation domain decomposition technique using finite elements on a parallel computer , 1993 .

[21]  F. Léné,et al.  Numerical analysis of junctions between plates , 1989 .