Regularity criteria for the Kuramoto-Sivashinsky equation in dimensions two and three

We propose and prove several regularity criteria for the 2D and 3D Kuramoto-Sivashinsky equation, in both its scalar and vector forms. In particular, we examine integrability criteria for the regularity of solutions in terms of the scalar solution φ, the vector solution u , ∇φ, as well as the divergence div(u) = ∆φ, and each component of u and ∇u. We also investigate these criteria computationally in the 2D case, and we include snapshots of solutions for several quantities of interest that arise in energy estimates.

[1]  Jacques Simon,et al.  Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure , 1990 .

[2]  Anna L. Mazzucato,et al.  Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection , 2020, Communications in Partial Differential Equations.

[3]  Roger Temam,et al.  Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attr , 1985 .

[4]  G. I. Siv Ashinsky,et al.  Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1988 .

[5]  G. Sell,et al.  Local dissipativity and attractors for the Kuramoto-Sivashinsky equation in thin 2D domains , 1992 .

[6]  C. Foias,et al.  Some specific mathematical constraints on 2D turbulence , 2008 .

[7]  J. Eckmann,et al.  A global attracting set for the Kuramoto-Sivashinsky equation , 1993 .

[8]  H. Ibdah Strong solutions to a modified Michelson-Sivashinsky equation , 2020, Communications in Mathematical Sciences.

[9]  Attractors for the Kuramoto-Sivashinsky equations , 1984 .

[10]  R. Temam,et al.  Variétés inertielles des équations différentielles dissipatives , 1985 .

[11]  Basil Nicolaenko,et al.  Remarks on the Kuramoto-Sivashinsky equation , 1984 .

[12]  Spatial Analyticity on the Global Attractor for the Kuramoto–Sivashinsky Equation , 2000 .

[13]  R. Wittenberg Optimal parameter-dependent bounds for Kuramoto-Sivashinsky-type equations , 2014 .

[14]  G. Sivashinsky On Flame Propagation Under Conditions of Stoichiometry , 1980 .

[15]  Chongsheng Cao,et al.  Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion , 2009, 0901.2908.

[16]  Ju. S. Il'yashenko Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation , 1992 .

[17]  S. Pokhozhaev On blow-up of solutions of the Kuramoto-Sivashinsky equation , 2008 .

[18]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[19]  D T Papageorgiou,et al.  An in-depth numerical study of the two-dimensional Kuramoto–Sivashinsky equation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Da Veiga,et al.  A new regularity class for the Navier-Stokes equations in R^n , 1995 .

[21]  Universal bounds on the attractor of the Navier-Stokes equation in the energy, enstrophy plane , 2007 .

[22]  Yong Zhou,et al.  On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .

[23]  Igor Kukavica,et al.  Navier-Stokes equations with regularity in one direction , 2007 .

[24]  C. Misbah,et al.  Secondary instabilities in the stabilized Kuramoto-Sivashinsky equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[26]  Chongsheng Cao,et al.  Two regularity criteria for the 3D MHD equations , 2009, 0903.2577.

[27]  Y. Smyrlis,et al.  Analyticity for Kuramoto–Sivashinsky‐type equations in two spatial dimensions , 2016 .

[28]  Pierre Collet,et al.  Analyticity for the Kuramoto-Sivashinsky equation , 1993 .

[29]  G. Sivashinsky,et al.  On Irregular Wavy Flow of a Liquid Film Down a Vertical Plane , 1980 .

[30]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[31]  Jonathan Goodman,et al.  Stability of the kuramoto-sivashinsky and related systems† , 1994 .

[32]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[33]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[34]  K. Yamazaki Regularity criteria of supercritical beta-generalized quasi-geostrophic equations in terms of partial derivatives , 2013 .

[35]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[36]  E. Titi,et al.  GLOBAL REGULARITY VS. FINITE-TIME SINGULARITIES: SOME PARADIGMS ON THE EFFECT OF BOUNDARY CONDITIONS AND CERTAIN PERTURBATIONS , 2014, 1401.1534.

[37]  Ciprian Foias,et al.  Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence ✩ , 2010 .

[38]  E. Titi,et al.  Finite-time singularity versus global regularity for hyper-viscous Hamilton-Jacobi-like equations , 2003 .

[39]  James C. Robinson,et al.  Well-posedness for the diffusive 3D Burgers equations with initial data in H^1/2 , 2016, 1601.04953.

[40]  David Swanson,et al.  Existence and generalized Gevrey regularity of solutions to the Kuramoto–Sivashinsky equation in Rn , 2007 .

[41]  Hantaek Bae Navier-Stokes equations , 1992 .

[42]  Edriss S. Titi,et al.  Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor , 2010, 1005.4463.

[43]  Toshio Tsuzmn,et al.  On the Formation of Dissipative Structures in Reaction-Diffusion Systems , 1975 .

[44]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[45]  M. Jolly,et al.  Algebraic bounds on the Rayleigh–Bénard attractor , 2019, Nonlinearity.

[46]  Trivial stationary solutions to the Kuramoto–Sivashinsky and certain nonlinear elliptic equations , 2006, math/0603723.

[47]  Felix Otto,et al.  Optimal bounds on the Kuramoto–Sivashinsky equation , 2009 .

[48]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[49]  G. Bo,et al.  The Global Attractors for the Periodic Initial Value Problem of Generalized Kuramoto-Sivashinsky Type Equations , 1993 .

[50]  B. Nicolaenko,et al.  Spectral barriers and inertial manifolds for dissipative partial differential equations , 1989 .

[51]  David M. Ambrose,et al.  Global Solutions of the Two-Dimensional Kuramoto–Sivashinsky Equation with a Linearly Growing Mode in Each Direction , 2021, Journal of Nonlinear Science.

[52]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[53]  D. T. Papageorgiou,et al.  Nonlinear dynamics of a dispersive anisotropic Kuramoto–Sivashinsky equation in two space dimensions , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  M. Jolly,et al.  Relations Between Energy and Enstrophy on the Global Attractor of the 2-D Navier-Stokes Equations , 2005 .

[55]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[56]  J. Hyman,et al.  The Kuramoto-Sivashinsky equation: a bridge between PDE's and dynamical systems , 1986 .

[57]  George R. Sell,et al.  Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .

[58]  Giovanni Fantuzzi,et al.  Bounds on mean energy in the Kuramoto–Sivashinsky equation computed using semidefinite programming , 2018, Nonlinearity.

[59]  Global Existence and Analyticity for the 2D Kuramoto–Sivashinsky Equation , 2017, 1708.08752.

[60]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[61]  E. Titi,et al.  Large dispersion, averaging and attractors: three 1D paradigms , 2016, Nonlinearity.

[62]  K. Yamazaki On the three-dimensional magnetohydrodynamics system in scaling-invariant spaces , 2014, 1409.5174.

[63]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[64]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[65]  J. Bowman,et al.  On the global attractor of 2D incompressible turbulence with random forcing , 2018 .

[66]  Eitan Tadmor,et al.  The well-posedness of the Kuramoto-Sivashinsky equation , 1986 .

[67]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[68]  Igor Kukavica,et al.  One component regularity for the Navier–Stokes equations , 2006 .