Butterfly effects: novel functional materials inspired from the wings scales.

Through millions of years of evolutionary selection, nature has created biological materials with various functional properties for survival. Many complex natural architectures, such as shells, bones, and honeycombs, have been studied and imitated in the design and fabrication of materials with enhanced hardness and stiffness. Recently, more and more researchers have started to research the wings of butterflies, mostly because of their dazzling colors. It was found that most of these iridescent colors are caused by periodic photonic structures on the scales that make up the surfaces of these wings. These materials have recently become a focus of multidiscipline research because of their promising applications in the display of structural colors, and in advanced sensors, photonic crystals, and solar cells. This paper review aims to provide a perspective overview of the research inspired by these wing structures in recent years.

[1]  Hiroshi Ogawa,et al.  Novel Photoanode Structure Templated from Butterfly Wing Scales , 2009 .

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  Masatsugu Shimomura,et al.  Simple fabrication of micro lens arrays. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[4]  Robert Withnall,et al.  Achieving structured colour in inorganic systems: Learning from the natural world , 2011 .

[5]  Zhong Lin Wang,et al.  Controlled replication of butterfly wings for achieving tunable photonic properties. , 2006, Nano letters.

[6]  Masatsugu Shimomura,et al.  Mechanical regulation of cellular adhesion onto honeycomb-patterned porous scaffolds by altering the elasticity of material surfaces. , 2013, Biomacromolecules.

[7]  Di Zhang,et al.  Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. , 2011, Physical chemistry chemical physics : PCCP.

[8]  Masatsugu Shimomura,et al.  Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  E Richalot,et al.  Finite element modeling of the radiative properties of Morpho butterfly wing scales. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Lei Jiang,et al.  Directional adhesion of superhydrophobic butterfly wings. , 2007, Soft matter.

[11]  Masatsugu Shimomura,et al.  Mesoscopic patterns of molecular aggregates on solid substrates , 1998 .

[12]  Takayuki Hoshino,et al.  Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure , 2004 .

[13]  H. Ghiradella,et al.  Insect Cuticular Surface Modifications , 2010 .

[14]  Zhongfan Liu,et al.  Cicada wings: a stamp from nature for nanoimprint lithography. , 2006, Small.

[15]  Di Zhang,et al.  Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing , 2011 .

[16]  Di Zhang,et al.  Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales , 2006 .

[17]  Masatsugu Shimomura,et al.  Hierarchical honeycomb structures utilized a dissipative process , 2004 .

[18]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  Yong Ding,et al.  Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry , 2008, Nanotechnology.

[20]  Serge Berthier,et al.  Photonique des Morphos , 2010 .

[21]  Tobias Hanrath,et al.  Inverse Opal Nanocrystal Superlattice Films. , 2004, Nano letters.

[22]  Di Zhang,et al.  Replication of butterfly wing in TiO2 with ordered mesopores assembled inside for light harvesting , 2010 .

[23]  Koen Clays,et al.  Linear and nonlinear optical properties of colloidal photonic crystals. , 2012, Chemical reviews.

[24]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[25]  Sadaaki Yamamoto,et al.  Preparation of Highly Oriented Nano‐Pit Arrays by Thermal Shrinking of Honeycomb‐Patterned Polymer Films , 2008 .

[26]  Davy P. Gaillot,et al.  INVESTIGATIONS AND MIMICRY OF THE OPTICAL PROPERTIES OF BUTTERFLY WINGS , 2010 .

[27]  Di Zhang,et al.  Tunable optical photonic devices made from moth wing scales: a way to enlarge natural functional structures' pool , 2011 .

[28]  Luquan Ren,et al.  Effects of Methanol on Wettability of the Non-Smooth Surface on Butterfly Wing , 2008 .

[29]  Di Zhang,et al.  Single porous SnO2 microtubes templated from Papilio maacki bristles: new structure towards superior gas sensing , 2014 .

[30]  Di Zhang,et al.  Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales , 2011 .

[31]  Marie Rassart,et al.  Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica (Scutelleridae). , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Glenn S. Smith,et al.  Detailed electromagnetic simulation for the structural color of butterfly wings. , 2009, Applied optics.

[33]  Tongxiang Fan,et al.  Butterflies: inspiration for solar cells and sunlight water-splitting catalysts , 2012 .

[34]  Wangzhou Shi,et al.  Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus , 2011 .

[35]  Yunnan Fang,et al.  Morphology-preserving conversion of a 3D bioorganic template into a nanocrystalline multicomponent oxide compound. , 2010, Angewandte Chemie.

[36]  Yuji Kuwahara,et al.  Reproduction of the Morpho blue by nanocasting lithography , 2006 .

[37]  Masatsugu Shimomura,et al.  Multiple-periodic structures of self-organized honeycomb-patterned films and polymer nanoparticles hybrids , 2006 .

[38]  Davy P Gaillot,et al.  Composite organic-inorganic butterfly scales: production of photonic structures with atomic layer deposition. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Mike Hutley,et al.  Les couleurs des papillons ou l'imperative beauté. Proprietes optiques des ailes de papillons , 2000 .

[40]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  Bo-Yang Liu,et al.  Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates , 2012 .

[42]  Masatsugu Shimomura,et al.  Design of novel biointerfaces (II). Fabrication of self-organized porous polymer film with highly uniform pores. , 2004, Bio-medical materials and engineering.

[43]  Caroline L. Schauer,et al.  Solid state characterization of α-chitin from Vanessa cardui Linnaeus wings , 2009 .

[44]  Di Zhang,et al.  Bioinspired ultraviolet reflective photonic structures derived from butterfly wings (Euploea) , 2011 .

[45]  Stephen Mann,et al.  Sol−Gel Synthesis of Organized Matter , 1997 .

[46]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[47]  Qixin Guo,et al.  Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates , 2006, Bioinspiration & biomimetics.

[48]  M Gu,et al.  Circular dichroism in biological photonic crystals and cubic chiral nets. , 2011, Physical review letters.

[49]  P. C. Rieke,et al.  Innovative materials processing strategies: a biomimetic approach. , 1992, Science.

[50]  Mathias Kolle,et al.  Photonic Structures Inspired by Nature , 2011 .

[51]  Jian Li,et al.  Honeycomb-Patterned Hybrid Films and Their Template Applications via A Tunable Amphiphilic Block Polymer/Inorganic Precursor System , 2009 .

[52]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[53]  Alison M. Sweeney,et al.  Insect communication: Polarized light as a butterfly mating signal , 2003, Nature.

[54]  David A. Leigh,et al.  Cover Picture: Light‐Driven Transport of a Molecular Walker in Either Direction along a Molecular Track (Angew. Chem. Int. Ed. 1/2011) , 2011 .

[55]  Di Zhang,et al.  High‐Density Hotspots Engineered by Naturally Piled‐Up Subwavelength Structures in Three‐Dimensional Copper Butterfly Wing Scales for Surface‐Enhanced Raman Scattering Detection , 2012 .

[56]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[57]  Di Zhang,et al.  Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors , 2010 .

[58]  Di Zhang,et al.  Controllable reflection properties of nanocomposite photonic crystals constructed by semiconductor nanocrystallites and natural periodic bio-matrices. , 2010, Nanoscale.

[59]  Olivier Eterradossi,et al.  Tailoring Highly Ordered Honeycomb Films Based on Ionomer Macromolecules by the Bottom-Up Approach , 2009 .

[60]  Bernard François,et al.  Self-organized honeycomb morphology of star-polymer polystyrene films , 1994, Nature.

[61]  Andrew T. Harris,et al.  Biotemplated synthesis of novel porous SiC , 2009 .

[62]  F. Harrison Microscopic anatomy of invertebrates , 1991 .

[63]  R. Hooke Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon , 2003 .

[64]  Osamu Sato,et al.  Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. , 2009, Accounts of chemical research.

[65]  J. Silver,et al.  Light-emitting nanocasts formed from bio-templates: FESEM and cathodoluminescent imaging studies of butterfly scale replicas , 2008, Nanotechnology.

[66]  Kwon Taek Lim,et al.  Single‐Step Self‐Organization of Ordered Macroporous Nanocrystal Thin Films , 2003 .

[67]  Serge Berthier,et al.  Iridescences: The Physical Colors of Insects , 2006 .

[68]  Francesco Galeotti,et al.  Self-Functionalizing Polymer Film Surfaces Assisted by Specific Polystyrene End-Tagging , 2010 .

[69]  Shin-Ichiro Nishimura,et al.  Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates , 1999 .

[70]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[71]  Peter Fratzl,et al.  Biomimetics and Biotemplating of Natural Materials , 2010 .

[72]  Bodo D Wilts,et al.  Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. , 2011, Optics express.

[73]  Di Zhang,et al.  Biomimetic Bi2WO6 with hierarchical structures from butterfly wings for visible light absorption , 2012 .

[74]  A. Richards,et al.  Studies on Arthropod Cuticle. I. The Distribution of Chitin in Lepidopterous Scales, and its Bearing on the Interpretation of Arthropod Cuticle, , 1947 .

[75]  J. Baumberg,et al.  Mimicking the colourful wing scale structure of the Papilio blumei butterfly. , 2010, Nature nanotechnology.

[76]  R. Sambles,et al.  Sculpted-multilayer optical effects in two species of Papilio butterfly. , 2001, Applied optics.

[77]  Paul Walden,et al.  Wandlungen der Chemie im letzten halben Jahrhundert Ein Rückblick anläßlich des 50jährigen Jubiläums der Zeitschrift , 1937 .

[78]  F Xi,et al.  Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[79]  Di Zhang,et al.  ZnO single butterfly wing scales: synthesis and spatial optical anisotropy , 2011 .

[80]  Di Zhang,et al.  Design of a structure with low incident and viewing angle dependence inspired by Morpho butterflies , 2013, Scientific Reports.

[81]  Ji Zhou,et al.  Ordered Ceramic Microstructures from Butterfly Bio‐template , 2006 .

[82]  L. Billon,et al.  Synthesis of amphiphilic diblock copolymers derived from renewable dextran by nitroxide mediated polymerization: towards hierarchically structured honeycomb porous films , 2014 .

[83]  Marie-Hélène Delville,et al.  Hybrid Core@ Soft Shell Particles as Adhesive Elementary Building Blocks for Colloidal Crystals , 2009 .

[84]  A. Parker,et al.  A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990) , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[85]  Tongxiang Fan,et al.  Iridescent large-area ZrO2 photonic crystals using butterfly as templates , 2009 .

[86]  Georges Hadziioannou,et al.  Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates , 2000 .

[87]  Carl A. Batt,et al.  Biotemplated Nanostructured Materials , 2008 .

[88]  Radislav A. Potyrailo,et al.  Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures , 2012 .

[89]  Hongmin Ma,et al.  Evaporation-induced ordered honeycomb structures of gold nanoparticles at the air/water interface. , 2010, Chemistry.

[90]  Rong Huang,et al.  Optical properties of SiO2 and ZnO nanostructured replicas of butterfly wing scales , 2011 .

[91]  Lei Jiang,et al.  Multifunctional integration: from biological to bio-inspired materials. , 2011, ACS nano.

[92]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[93]  Di Zhang,et al.  A simple and effective approach towards biomimetic replication of photonic structures from butterfly wings , 2009, Nanotechnology.

[94]  Zhixin Chen,et al.  Precision replication of hierarchical biological structures by metal oxides using a sonochemical method. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[95]  Leon Poladian,et al.  Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours , 2006, Journal of The Royal Society Interface.

[96]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[97]  L. Hench,et al.  The sol-gel process , 1990 .

[98]  Louay A. Eldada,et al.  Nanoengineering: fabrication, properties, optics, and devices : 4-6 August, 2004, Denver, Colorado , 2004 .

[99]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[100]  Masatsugu Shimomura,et al.  Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. , 2013, Chemical communications.

[101]  Hong Yee Low,et al.  Mimicking domino-like photonic nanostructures on butterfly wings. , 2009, Small.

[102]  Vijaya B. Chalivendra,et al.  Role of surface roughness on wettability and coefficient of restitution in butterfly wings , 2011 .

[103]  Zs. Bálint,et al.  Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors , 2008, Optical Engineering + Applications.

[104]  Darrell J Kemp,et al.  Female butterflies prefer males bearing bright iridescent ornamentation , 2007, Proceedings of the Royal Society B: Biological Sciences.

[105]  Di Zhang,et al.  Controllable synthesis and gas response of biomorphic SnO2 with architecture hierarchy of butterfly wings , 2010 .

[106]  Zhongze Gu,et al.  In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). , 2013, Journal of materials chemistry. B.

[107]  H. Ghiradella,et al.  Development of butterfly scales. II. Struts, lattices and surface tension , 1976, Journal of morphology.

[108]  Chunxiong Luo,et al.  Artificial lotus leaf by nanocasting. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[109]  C. W. Mason,et al.  Structural Colors in Insects. II , 1926 .

[110]  Hang Sun,et al.  Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces. , 2005, Journal of the American Chemical Society.

[111]  Di Zhang,et al.  Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings , 2009, Nanotechnology.

[112]  A. Richards,et al.  An Electron Microscope Study of Some Structural Colors of Insects , 1942 .

[113]  Asa Asadollahbaik,et al.  Helium ion microscopy of Lepidoptera scales. , 2012, Scanning.

[114]  Serge Berthier,et al.  Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus , 2003 .

[115]  C. Summers,et al.  Biomimicry of optical microstructures of Papilio palinurus , 2011 .

[116]  Christopher Barner-Kowollik,et al.  Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process , 2008 .

[117]  T. G. Ireland,et al.  Novel nano-structured phosphor materials cast from natural Morpho butterfly scales , 2005 .

[118]  Di Zhang,et al.  Photonic Crystals: 3D Network Magnetophotonic Crystals Fabricated on Morpho Butterfly Wing Templates (Adv. Funct. Mater. 10/2012) , 2012 .

[119]  Michael H. Bartl,et al.  Photonic Structures in Biology: A Possible Blueprint for Nanotechnology , 2014 .

[120]  Robert Withnall,et al.  Facile method of infilling photonic silica templates with rare earth element oxide phosphor precursors , 2004 .

[121]  R. Corkery,et al.  Inorganic chiral 3-D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales. , 2011, Chemical communications.

[122]  Di Zhang,et al.  Fabrication of Fe-wings used for micro imprinting with a natural butterfly wing structure by in situ carbothermic reduction. , 2013, Journal of materials chemistry. B.

[123]  Jean-Pol Vigneron,et al.  Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration , 2011 .

[124]  Di Zhang,et al.  Bioinspired fabrication of magneto-optic hierarchical architecture by hydrothermal process from butterfly wing , 2011 .

[125]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[126]  Kristel Michielsen,et al.  Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales , 2012, Interface Focus.

[127]  Masatsugu Shimomura,et al.  Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): uniform porous polymer scaffolds prepared by the breath figure technique. , 2013, Biomaterials science.

[128]  W. Marsden I and J , 2012 .

[129]  Yiding Liu,et al.  Templated synthesis of nanostructured materials. , 2013, Chemical Society reviews.

[130]  Christophe Peroz,et al.  Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol–gel films , 2008, Bioinspiration & biomimetics.

[131]  Di Zhang,et al.  One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation , 2013 .

[132]  Gary Cook,et al.  Exact replication of biological structures by chemical vapor deposition of silica. , 2003, Angewandte Chemie.

[133]  Andrew G. Glen,et al.  APPL , 2001 .

[134]  Di Zhang,et al.  Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method. , 2013, Optics letters.

[135]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[136]  Akhlesh Lakhtakia,et al.  Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics , 2008 .

[137]  Te-Hua Fang,et al.  Replication of butterfly wing microstructures using molding lithography , 2010 .

[138]  R. Corkery,et al.  3D titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths , 2013 .

[139]  Ye Cai,et al.  3D rutile titania-based structures with morpho butterfly wing scale morphologies. , 2008, Angewandte Chemie.

[140]  Chiara Botta,et al.  Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach , 2013 .

[141]  Takayuki Hoshino,et al.  Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition , 2005 .

[142]  Doekele G Stavenga,et al.  Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane , 2010, Journal of Experimental Biology.

[143]  Christophe Derail,et al.  Unexpected behaviour of multi-walled carbon nanotubes during “in situ” polymerization process: When carbon nanotubes act as initiators and control agents for radical polymerization , 2012 .

[144]  Di Zhang,et al.  Moth wing scales as optical pH sensors , 2012 .

[145]  Di Zhang,et al.  Morphological effects on surface-enhanced Raman scattering from silver butterfly wing scales synthesized via photoreduction. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[146]  S. Doucet,et al.  Iridescence: a functional perspective , 2009, Journal of The Royal Society Interface.

[147]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[148]  Serge Berthier La couleur des papillons ou L'impérative beauté, propriétés optiques des ailes de papillons , 1999 .

[149]  Nicola Pinna,et al.  Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications , 2012, Advanced materials.

[150]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[151]  Di Zhang,et al.  Biosynthesis of cathodoluminescent zinc oxide replicas using butterfly (Papilio paris) wing scales as templates , 2009 .

[152]  L. Billon,et al.  A versatile route to functional biomimetic coatings: ionomers for honeycomb-like structures. , 2007, Soft matter.

[153]  Sébastien R Mouchet,et al.  Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere , 2012, Photonics Europe.

[154]  Qixin Guo,et al.  Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates , 2006 .

[155]  Akhlesh Lakhtakia,et al.  Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates , 2009, Bioinspiration & biomimetics.