Force probing surfaces of living cells to molecular resolution.

Biological processes rely on molecular interactions that can be directly measured using force spectroscopy techniques. Here we review how atomic force microscopy can be applied to force probe surfaces of living cells to single-molecule resolution. Such probing of individual interactions can be used to map cell surface receptors, and to assay the receptors' functional states, binding kinetics and landscapes. This information provides unique insight into how cells structurally and functionally modulate the molecules of their surfaces to interact with the cellular environment.

[1]  Viola Vogel,et al.  Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. , 2009, Current opinion in cell biology.

[2]  L. Addadi,et al.  Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates , 2001, Nature Cell Biology.

[3]  D. Anselmetti,et al.  Binding strength between cell adhesion proteoglycans measured by atomic force microscopy , 1995, Science.

[4]  H Schindler,et al.  Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Davis,et al.  Membrane nanotubes: dynamic long-distance connections between animal cells , 2008, Nature Reviews Molecular Cell Biology.

[6]  Daniel J. Muller,et al.  Galectin-3 Regulates Integrin α2β1-mediated Adhesion to Collagen-I and -IV* , 2008, Journal of Biological Chemistry.

[7]  Stéphane Cuenot,et al.  Nanoscale mapping and functional analysis of individual adhesins on living bacteria , 2005, Nature Methods.

[8]  G. Georgiou,et al.  Molecular determinants of bacterial adhesion monitored by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[10]  Helmut Grubmüller,et al.  Mechanoenzymatics of titin kinase , 2008, Proceedings of the National Academy of Sciences.

[11]  Jelena Mandic,et al.  Chemomechanical mapping of ligand–receptor binding kinetics on cells , 2007, Proceedings of the National Academy of Sciences.

[12]  Feiya Li,et al.  Force measurements of the alpha5beta1 integrin-fibronectin interaction. , 2003, Biophysical journal.

[13]  Jens Friedrichs,et al.  Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. , 2007, Molecular biology of the cell.

[14]  W. Lam,et al.  DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells. , 2008, Angewandte Chemie.

[15]  J. Fritz,et al.  Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Kenneth M. Yamada,et al.  Transmembrane crosstalk between the extracellular matrix and the cytoskeleton , 2001, Nature Reviews Molecular Cell Biology.

[17]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[18]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[19]  Michael Sheetz,et al.  Magnetic tweezers in cell biology. , 2007, Methods in cell biology.

[20]  Mervyn J Miles,et al.  A mechanical microscope: High speed atomic force microscopy , 2005 .

[21]  H. Gaub,et al.  Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. , 1998, Human reproduction.

[22]  Vincent T. Moy,et al.  Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion , 2003, Journal of Cell Science.

[23]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[24]  M. Rief,et al.  How strong is a covalent bond? , 1999, Science.

[25]  David A Calderwood,et al.  Forces and Bond Dynamics in Cell Adhesion , 2007, Science.

[26]  Cheng Zhu,et al.  Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Daniel J. Muller,et al.  A bond for a lifetime: employing membrane nanotubes from living cells to determine receptor-ligand kinetics. , 2008, Angewandte Chemie.

[28]  Daniel J Müller,et al.  Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. , 2008, Nature nanotechnology.

[29]  Daniel J Müller,et al.  Atomic force microscopy and spectroscopy of native membrane proteins , 2007, Nature Protocols.

[30]  Viola Vogel,et al.  Biophysics of catch bonds. , 2008, Annual review of biophysics.

[31]  V. Moy,et al.  Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. , 2002, Biophysical journal.

[32]  P. Janmey,et al.  Tissue Cells Feel and Respond to the Stiffness of Their Substrate , 2005, Science.

[33]  H. Gaub,et al.  Affinity Imaging of Red Blood Cells Using an Atomic Force Microscope , 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[34]  Daniel J. Muller,et al.  BCR/ABL expression of myeloid progenitors increases beta1-integrin mediated adhesion to stromal cells. , 2008, Journal of molecular biology.

[35]  Yves F Dufrêne,et al.  Chemical force microscopy of single live cells. , 2007, Nano letters.

[36]  P. Baumann,et al.  ANTI-ADHESION evolves to a promising therapeutic concept in oncology. , 2008, Current medicinal chemistry.

[37]  Charles M. Lieber,et al.  Functional Group Imaging by Chemical Force Microscopy , 1994, Science.

[38]  N Almqvist,et al.  Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. , 2004, Biophysical journal.

[39]  S. Lata,et al.  High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. , 2005, Chemistry.

[40]  E. Evans Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. , 1998, Faraday discussions.

[41]  T. Lecuit,et al.  Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis , 2007, Nature Reviews Molecular Cell Biology.

[42]  H. Gaub,et al.  A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy. , 2000, Biophysical journal.

[43]  H. Lang,et al.  How the doors to the nanoworld were opened , 2006, Nature nanotechnology.

[44]  Harold P. Erickson,et al.  Force Measurements of the α5β1 Integrin–Fibronectin Interaction , 2003 .

[45]  H. Gaub,et al.  Unfolding pathways of individual bacteriorhodopsins. , 2000, Science.

[46]  Daniel J Müller,et al.  Analyzing focal adhesion structure by atomic force microscopy , 2005, Journal of Cell Science.

[47]  A. Malkin,et al.  In vitro high-resolution structural dynamics of single germinating bacterial spores , 2006, Proceedings of the National Academy of Sciences.

[48]  Matthias Rief,et al.  Ligand-Dependent Equilibrium Fluctuations of Single Calmodulin Molecules , 2009, Science.

[49]  Deborah Leckband,et al.  Biophysical Properties of Cadherin Bonds Do Not Predict Cell Sorting* , 2008, Journal of Biological Chemistry.

[50]  F. Fay Isometric contractile properties of single isolated smooth muscle cells , 1977, Nature.

[51]  K. Anderson,et al.  Actin microridges characterized by laser scanning confocal and atomic force microscopy , 2005, FEBS letters.

[52]  Daniel J. Muller,et al.  Contributions of Galectin-3 and -9 to Epithelial Cell Adhesion Analyzed by Single Cell Force Spectroscopy* , 2007, Journal of Biological Chemistry.

[53]  H. Waldmann,et al.  Chemical strategies for generating protein biochips. , 2008, Angewandte Chemie.

[54]  A. Ikai,et al.  MAPPING CELL WALL POLYSACCHARIDES OF LIVING MICROBIAL CELLS USING ATOMIC FORCE MICROSCOPY , 1997, Cell biology international.

[55]  F. Marga,et al.  Multiple membrane tethers probed by atomic force microscopy. , 2005, Biophysical journal.

[56]  Yves F Dufrêne,et al.  Direct measurement of hydrophobic forces on cell surfaces using AFM. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[57]  B. Geiger,et al.  Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. , 2001, Nature reviews. Molecular cell biology.

[58]  F. Kienberger,et al.  A new, simple method for linking of antibodies to atomic force microscopy tips. , 2007, Bioconjugate chemistry.

[59]  Daniel Choquet,et al.  Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages , 1997, Cell.

[60]  H. Gaub,et al.  Intermolecular forces and energies between ligands and receptors. , 1994, Science.

[61]  Daniel J Müller,et al.  Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. , 2007, Annual review of biophysics and biomolecular structure.

[62]  B. Gumbiner,et al.  Regulation of cadherin-mediated adhesion in morphogenesis , 2005, Nature Reviews Molecular Cell Biology.

[63]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[64]  Daniel J. Muller,et al.  Single-cell force spectroscopy , 2008, Journal of Cell Science.

[65]  Adam Byron,et al.  Integrin ligands at a glance , 2006, Journal of Cell Science.

[66]  C. le Grimellec,et al.  Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. , 1998, Biophysical journal.

[67]  Wei Chen,et al.  Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. , 2008, Biophysical journal.

[68]  Michael P. Sheetz,et al.  Cell control by membrane–cytoskeleton adhesion , 2001, Nature Reviews Molecular Cell Biology.

[69]  Yves F. Dufrêne,et al.  Towards nanomicrobiology using atomic force microscopy , 2008, Nature Reviews Microbiology.

[70]  M A Horton,et al.  Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. , 1999, Biochemical and biophysical research communications.

[71]  H Schindler,et al.  Cadherin interaction probed by atomic force microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Stewart,et al.  Skeletal Muscle Performance Determined by Modulation of Number of Myosin Motors Rather Than Motor Force or Stroke Size , 2007, Cell.

[73]  Alain R. Baulard,et al.  Organization of the mycobacterial cell wall: a nanoscale view , 2008, Pflügers Archiv - European Journal of Physiology.

[74]  M. Krieg,et al.  Tensile forces govern germ-layer organization in zebrafish , 2008, Nature Cell Biology.

[75]  Anna V. Taubenberger,et al.  TPA primes α2β1 integrins for cell adhesion , 2008, FEBS letters.

[76]  R. Alon,et al.  Integrin modulation and signaling in leukocyte adhesion and migration , 2007, Immunological reviews.

[77]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[78]  Jens Friedrichs,et al.  Revealing Early Steps of α2β1 Integrin-mediated Adhesion to Collagen Type I by Using Single-Cell Force Spectroscopy , 2007 .

[79]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[80]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[81]  Jens Waschke,et al.  Nano-scale dynamic recognition imaging on vascular endothelial cells. , 2007, Biophysical journal.

[82]  C. Carman,et al.  Structural basis of integrin regulation and signaling. , 2007, Annual review of immunology.

[83]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[84]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[85]  Yves F Dufrêne,et al.  High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. , 2008, Biophysical journal.

[86]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[87]  Viola Vogel,et al.  Mechanotransduction involving multimodular proteins: converting force into biochemical signals. , 2006, Annual review of biophysics and biomolecular structure.

[88]  Hermann E. Gaub,et al.  Discrete interactions in cell adhesion measured by single-molecule force spectroscopy , 2000, Nature Cell Biology.

[89]  Benjamin Geiger,et al.  Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. , 2006, Current opinion in cell biology.

[90]  J. Killian,et al.  Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. , 2004, Biochemistry.

[91]  Masatoshi Yokokawa,et al.  Fast‐scanning atomic force microscopy reveals the ATP/ADP‐dependent conformational changes of GroEL , 2006, The EMBO journal.

[92]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[93]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[94]  Nancy R Forde,et al.  Mechanical processes in biochemistry. , 2004, Annual review of biochemistry.

[95]  F. Kienberger,et al.  Multiple receptors involved in human rhinovirus attachment to live cells , 2008, Proceedings of the National Academy of Sciences.

[96]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[97]  M. Sheetz,et al.  Local force and geometry sensing regulate cell functions , 2006, Nature Reviews Molecular Cell Biology.

[98]  Ling Wang,et al.  Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. , 2007, Nano letters.

[99]  H. Gaub,et al.  Atomic force microscope imaging contrast based on molecular recognition. , 1997, Biophysical journal.

[100]  Daniel J. Muller,et al.  Examining the dynamic energy landscape of an antiporter upon inhibitor binding. , 2008, Journal of molecular biology.

[101]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[102]  Mingzhai Sun,et al.  The effect of cellular cholesterol on membrane-cytoskeleton adhesion , 2007, Journal of Cell Science.