Petri Nets and Algebraic Calculi of Processes

We show that, as transition systems, Petri nets may be expressed by terms of a calculus of processes which is a variant of Milner's SCCS. We then prove that the class of labelled nets forms a subcalculus, thus an algebra, with juxtaposition, adding condition and labelling as primitive operations.

[1]  Robert de Simone,et al.  Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..

[2]  Robin Milner,et al.  On relating synchrony and asynchrony , 1980 .

[3]  Vadim E. Kotov,et al.  An Algebra for Parallelism Based on Petri Nets , 1978, MFCS.

[4]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[5]  Alan Mycroft,et al.  On the Relationship of CCS and Petri Nets , 1984, ICALP.

[6]  Grzegorz Rozenberg,et al.  Subset Languages of Petri Nets , 1982, European Workshop on Applications and Theory of Petri Nets.

[7]  James Lyle Peterson,et al.  Petri net theory and the modeling of systems , 1981 .

[8]  Grzegorz Rozenberg,et al.  Subset Languages of Petri Nets Part I: The Relationship to String Languages and Normal Forms , 1983, Theor. Comput. Sci..

[9]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[10]  Robin Milner,et al.  Flowgraphs and Flow Algebras , 1979, JACM.

[11]  Robin Milner,et al.  Four combinators for concurrency , 1982, PODC '82.

[12]  Gérard Boudol,et al.  Algèbre de Processus et Synchronisation , 1984, Theor. Comput. Sci..

[13]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[14]  G. Boudol,et al.  Notes on Algebraic Calculi of Processes , 1989, Logics and Models of Concurrent Systems.

[15]  Glynn Winskel,et al.  Categories of Models for Concurrency , 1984, Seminar on Concurrency.

[16]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .