An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation

Abstract Based on a Lie super-algebra B(0, 1), an integrable generalization of the super AKNS iso-spectral problem is introduced and its corresponding generalized super AKNS hierarchy is generated. By making use of the super-trace identity (or the super variational identity), the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. A generalized super AKNS soliton hierarchy with self-consistent sources is also presented.

[1]  Hong-qing Zhang,et al.  A hierarchy of generalized AKNS equations, N-Hamiltonian structures and finite-dimensional involutive systems and integrable systems , 2001 .

[2]  Yong Chen,et al.  Conservation laws and self-consistent sources for a super integrable equation hierarchy , 2012 .

[3]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[4]  Jingsong He,et al.  The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems , 2009, 0910.3080.

[5]  Tiecheng Xia,et al.  Conservation laws for a super G–J hierarchy with self-consistent sources , 2012 .

[6]  Jingsong He,et al.  A supertrace identity and its applications to superintegrable systems , 2008 .

[7]  Shoufeng Shen,et al.  An integrable generalization of the Kaup–Newell soliton hierarchy , 2014 .

[8]  Wenxiu Ma,et al.  A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems , 1995 .

[9]  A new six-component super soliton hierarchy and its self-consistent sources and conservation laws* , 2016 .

[10]  Wu Li-Hua,et al.  A Super Extension of Kaup—Newell Hierarchy , 2010 .

[11]  Soliton solutions for the super mKdV and sinh-Gordon hierarchy , 2006, hep-th/0607107.

[12]  M. Ivanov,et al.  THE QUADRATIC BUNDLE OF GENERALIZED FORM AND THE NONLINEAR EVOLUTION EQUATIONS. EXPANSIONS OVER THE 'SQUARED' SOLUTIONS: GENERAL FOURIER TRANSFORM , 1982 .

[13]  J. F. Gomes,et al.  A class of soliton solutions for the N = 2 super mKdV/Sinh-Gordon hierarchy , 2007, 0712.0626.

[14]  Xing-Biao Hu,et al.  An approach to generate superextensions of integrable systems , 1997 .

[15]  Shoufeng Shen,et al.  New integrable sl(2,R)-generalization of the classical Wadati–Konno–Ichikawa hierarchy , 2015 .

[16]  Jingsong He,et al.  Binary nonlinearization of the super AKNS system under an implicit symmetry constraint , 2009, 0910.1961.

[17]  Jingsong He,et al.  BINARY NONLINEARIZATION OF THE SUPER AKNS SYSTEM , 2007, 0711.2785.

[18]  Zhang Li-ning,et al.  Super AKNS scheme and its infinite conserved currents , 1986 .

[19]  Jun Du,et al.  Hamiltonian and super-Hamiltonian systems of a hierarchy of soliton equations , 2010, Appl. Math. Comput..

[21]  A. Belitsky Fusion hierarchies for N = 4 super-Yang-Mills theory , 2008, 0803.2035.

[22]  Gui‐zhang Tu,et al.  The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems , 1989 .

[23]  Metin Gürses,et al.  A super AKNS scheme , 1985 .

[24]  Huiqun Zhang,et al.  Integrable Couplings, Variational Identities and Hamiltonian Formulations , 2012 .

[25]  Geng Xian-Guo,et al.  A hierarchy of non-linear evolution equations its Hamiltonian structure and classical integrable system , 1992 .

[26]  Tiecheng Xia,et al.  Super-KN Hierarchy and Its Super-Hamiltonian Structure , 2011 .

[27]  A. Roy Chowdhury,et al.  On the Bäcklund transformation and Hamiltonian properties of superevaluation equations , 1986 .