Time domain boundary elements for dynamic contact problems

Abstract This article considers a unilateral contact problem for the wave equation. The problem is reduced to a variational inequality for the Dirichlet-to-Neumann operator for the wave equation on the boundary, which is solved in a saddle point formulation using boundary elements in the time domain. As a model problem, also a variational inequality for the single layer operator is considered. A priori estimates are obtained for Galerkin approximations both to the variational inequality and the mixed formulation in the case of a flat contact area, where the existence of solutions to the continuous problem is known. Numerical experiments demonstrate the performance of the proposed mixed method. They indicate the stability and convergence beyond flat geometries.

[1]  Ernst P. Stephan,et al.  Coupling of Boundary Element Methods and Finite Element Methods , 2004 .

[2]  R. Cooper Two Variational Inequality Problems for the Wave Equation in a Half-space , 1999 .

[3]  P. Wriggers Computational contact mechanics , 2012 .

[4]  Francisco-Javier Sayas,et al.  The Validity of Johnson-Nédélec's BEM-FEM Coupling on Polygonal Interfaces , 2009, SIAM Rev..

[5]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[6]  Matthias Gläfke,et al.  Adaptive methods for time domain boundary integral equations for acoustic scattering , 2012 .

[7]  Ernst P. Stephan,et al.  Time Domain Boundary Element Methods for the Neumann Problem: Error Estimates and Acoustic Problems , 2018, Journal of Computational Mathematics.

[8]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[9]  Ernst P. Stephan,et al.  A priori error estimates for a time‐dependent boundary element method for the acoustic wave equation in a half‐space , 2014, 1406.7566.

[10]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[11]  David Stark,et al.  Boundary elements with mesh refinements for the wave equation , 2018, Numerische Mathematik.

[12]  G. Eskin Boundary Value Problems for Elliptic Pseudodifferential Equations , 2008 .

[13]  Patrick Joly,et al.  Mathematical aspects of variational boundary integral equations for time dependent wave propagation , 2017 .

[14]  Patrick Laborde,et al.  On the discretization of contact problems in elastodynamics , 2006 .

[15]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[16]  M. Diligenti,et al.  Energetic BEM–FEM coupling for wave propagation in 3D multidomains , 2014 .

[17]  T. Ha-Duong,et al.  On the transient acoustic scattering by a flat object , 1990 .

[18]  P. Tallec,et al.  Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .

[19]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[20]  Miguel A. Fernández,et al.  Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis , 2008, SIAM J. Numer. Anal..

[21]  Alexandre Ern,et al.  Analysis of the Modified Mass Method for the Dynamic Signorini Problem with Coulomb Friction , 2011, SIAM J. Numer. Anal..

[22]  Lehel Banjai,et al.  Time-domain Dirichlet-to-Neumann map and its discretization , 2014 .

[23]  Patrice Hauret,et al.  Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .

[24]  Francisco-Javier Sayas,et al.  Stable numerical coupling of exterior and interior problems for the wave equation , 2013, Numerische Mathematik.

[25]  P. Tallec,et al.  Solving dynamic contact problems with local refinement in space and time , 2012 .

[26]  Lothar Banz,et al.  Time domain BEM for sound radiation of tires , 2016 .

[27]  M. Cocou Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity , 2002 .

[28]  Joachim Gwinner,et al.  Advanced Boundary Element Methods: Treatment of Boundary Value, Transmission and Contact Problems , 2018 .

[29]  Wolfgang L. Wendland,et al.  A symmetric boundary method for contact problems with friction , 1999 .

[30]  T. Ha-Duong,et al.  A Galerkin BEM for transient acoustic scattering by an absorbing obstacle , 2003 .

[31]  I. Babuska,et al.  On the mixed finite element method with Lagrange multipliers , 2003 .

[32]  Patrick Joly,et al.  Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains , 2011, J. Comput. Phys..

[33]  Ernst P. Stephan,et al.  Adaptive time-domain boundary element methods and engineering applications , 2017 .

[34]  J. Bennish Mixed initial-boundary value problems for hyperbolic equations with constant coefficients , 1990 .

[35]  Michael Karkulik,et al.  N ov 2 01 4 Local high-order regularization and applications to hp-methods ( extended version ) ∗ , 2014 .

[36]  Martin Costabel,et al.  Time‐Dependent Problems with the Boundary Integral Equation Method , 2004 .

[37]  Michelle Schatzman,et al.  A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .

[38]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[39]  Jérôme Pousin,et al.  An overview of recent results on Nitsche's method for contact problems , 2016 .

[40]  Christof Eck,et al.  Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .

[41]  Brian Hiroyuki Sako A model for the crack and punch problem in elasticity , 1986 .

[42]  Lothar Banz,et al.  Stabilized mixed hp-BEM for frictional contact problems in linear elasticity , 2014, Numerische Mathematik.

[43]  Isabelle Terrasse,et al.  Resolution mathematique et numerique des equations de maxwell instationnaires par une methode de potentiels retardes , 1993 .

[44]  A. Bogomolnii,et al.  Numerical solution of the stamp problem , 1978 .

[45]  Lehel Banjai,et al.  Convolution quadrature for the wave equation with a nonlinear impedance boundary condition , 2016, Math. Comput..

[46]  Francisco-Javier Sayas,et al.  Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .

[47]  T. Ha-Duong,et al.  On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .

[48]  Liping Liu THEORY OF ELASTICITY , 2012 .