Parametric design velocity computation for CAD-based design optimization using adjoint methods

This paper presents an efficient optimization process, where the parameters defining the features in a feature-based CAD model are used as design variables. The process exploits adjoint methods for the computation of gradients, and as such the computational cost is essentially independent of the number of design variables, making it ideal for optimization in large design spaces. The novelty of this paper lies in linking the adjoint surface sensitivity information with geometric sensitivity values, referred to as design velocities, computed for CAD models created in commercial CAD systems (e.g. CATIA V5 or Siemens NX). This process computes gradients based on the CAD feature parameters, which are used by the optimization algorithm, which in turn updates the values of the same parameters in the CAD model. In this paper, the design velocity and resulting gradient calculations are validated against analytical and finite-difference results. The proposed approach is demonstrated to be compatible with different commercial CAD packages and computational fluid dynamics solvers.

[1]  Cecil Armstrong,et al.  Optimizing parameterized CAD geometries using sensitivities based on adjoint functions , 2012 .

[2]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[3]  S. Chen,et al.  Three-dimensional shape optimization with variational geometry , 1997 .

[4]  J. Alonso,et al.  SU2: An Open-Source Suite for Multiphysics Simulation and Design , 2016 .

[5]  Jens-Dominik Müller,et al.  CAD‐based shape optimisation with CFD using a discrete adjoint , 2014 .

[6]  Jiri Kripac,et al.  A mechanism for persistently naming topological entities in history-based parametric solid models , 1995, Comput. Aided Des..

[7]  Vadim Shapiro,et al.  Shape sensitivity of constructively represented geometric models , 2008, Comput. Aided Geom. Des..

[8]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aero-Structural Design Using a Parametric CAD-Based Model , 2003 .

[9]  Michael J. Aftosmis,et al.  Adjoint sensitivity computations for an embedded-boundary Cartesian mesh method , 2008, J. Comput. Phys..

[10]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[11]  C. Othmer A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows , 2008 .

[12]  Juan J. Alonso,et al.  Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers , 1996 .

[13]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[14]  Dheeraj Agarwal,et al.  Aerodynamic optimization using Adjoint methods and parametric CAD models , 2016 .

[15]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[16]  Carsten Othmer CFD TOPOLOGY AND SHAPE OPTIMIZATION WITH ADJOINT METHODS CFD-Topologie- und Formoptimierung mit Adjungierten-Methoden , 2006 .

[17]  Luis Santos,et al.  Aerodynamic shape optimization using the adjoint method , 2007 .

[18]  Thomas D. Economon,et al.  Large-scale aircraft design using SU2 , 2015 .

[19]  J. Alonso,et al.  SU 2 : An Open-Source Suite for Multiphysics Simulation and Design , 2016 .

[20]  Ali Elham,et al.  Wing aerostructural optimization using the Individual Discipline Feasible Architecture , 2017 .

[21]  Vadim Shapiro,et al.  Boundary representation deformation in parametric solid modeling , 1998, TOGS.

[22]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[23]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[24]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[25]  Dominic Jones,et al.  CAD-based shape optimisation using adjoint sensitivities , 2011 .

[26]  Antony Jameson,et al.  Aerodynamic Shape Optimization Using the Adjoint Method , 2003 .

[27]  Kyung K. Choi,et al.  A CAD-based design parameterization for shape optimization of elastic solids , 1999 .

[28]  Marcus Meyer,et al.  Analysis of High Pressure Turbine Nozzle Guide Vanes Considering Geometric Variations , 2016 .

[29]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[30]  S. Shahpar,et al.  Challenges to overcome for routine usage of automatic optimisation in the propulsion industry , 2011, The Aeronautical Journal (1968).

[31]  Cecil Armstrong,et al.  Aerodynamic Shape Optimization Using Feature based CAD Systems and Adjoint Methods , 2017 .

[32]  Stefan Ulbrich,et al.  A Discrete Adjoint Approach for the Optimization of Unsteady Turbulent Flows , 2013 .

[33]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[34]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[35]  Marcus Meyer,et al.  Linking Parametric CAD with Adjoint Surface Sensitivities , 2016 .

[36]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[37]  Robert Haimes,et al.  Surface Mesh Movement Algorithm for Computer-Aided-Design-Based Aerodynamic Shape Optimization , 2016 .

[38]  Joel Brezillon,et al.  2D and 3D aerodynamic shape optimisation using the adjoint approach , 2004 .