Nanoscale Ordering in Oxygen Deficient Quintuple Perovskite Sm2-εBa3+εFe5O15-δ: Implication for Magnetism and Oxygen Stoichiometry

The investigation of the system Sm–Ba–Fe-O in air has allowed an oxygen deficient perovskite Sm2-eBa3+eFe5O15-δ (δ = 0.75, e = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (ap = 3.934 A), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, “ap × ap × 5ap”. The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely “Sm–Ba–Ba/Sm–Ba/Sm–Ba–Sm”, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d5L configuration of iron.

[1]  G. Botton,et al.  Atomic scale real-space mapping of holes in YBa2Cu3O6+δ , 2014, Nature Communications.

[2]  V. Cherepanov,et al.  Synthesis, crystal structure and properties of SmBaCo2−xFexO5+δ , 2013 .

[3]  P. Fournier,et al.  Magnetic and micro-Raman studies of hexagonal-DyMnO3 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  J. Verbeeck,et al.  Site-specific mapping of transition metal oxygen coordination in complex oxides , 2012 .

[5]  Zongping Shao,et al.  Systematic evaluation of Co-free LnBaFe2O5+δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells , 2012 .

[6]  P. Paturi,et al.  Irreversible metamagnetic transition and magnetic memory in small-bandwidth manganite Pr1−xCaxMnO3 (x = 0.0–0.5) , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  J. Verbeeck,et al.  Atomic Resolution Coordination Mapping in Ca2FeCoO5 Brownmillerite by Spatially Resolved Electron Energy-Loss Spectroscopy , 2012 .

[8]  J. Hayes,et al.  An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  K. Świerczek Physico-chemical properties of Ln0.5A0.5Co0.5Fe0.5O3−δ (Ln: La, Sm; A: Sr, Ba) cathode materials and their performance in electrolyte-supported Intermediate Temperature Solid Oxide Fuel Cell , 2011 .

[10]  V. Cherepanov,et al.  Phase equilibria and crystal structure of the complex oxides in the Ln-Ba-Co-O (Ln=Nd, Sm) systems , 2011 .

[11]  S. Kikkawa,et al.  Remarkable Oxygen Intake/Release Capability of BaYMn2O5+δ: Applications to Oxygen Storage Technologies , 2010 .

[12]  S. Bhat,et al.  Probing the existing magnetic phases in Pr0.5Ca0.5MnO3 (PCMO) nanowires and nanoparticles: magnetization and magneto-transport investigations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Vladislav V. Kharton,et al.  Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review , 2008 .

[14]  A. Manthiram,et al.  LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells , 2008 .

[15]  V. Caignaert,et al.  Spin-locking effect in the nanoscale ordered perovskite cobaltite LaBaCO2O6 , 2007, 0707.3346.

[16]  M. Gospodinov,et al.  Magnetic phase diagrams of multiferroic hexagonal RMnO_3 (R = Er, Yb, Tm, and Ho) , 2007, 0705.3825.

[17]  J. Kilner,et al.  Electrical properties of GdBaCo2O5+x for ITSOFC applications , 2006 .

[18]  R. Withers,et al.  The phase diagram and tetragonal superstructures of the rare earth cobaltate phases Ln1−xSrxCoO3–δ (Ln=La3+, Pr3+, Nd3+, Sm3+, Gd3+, Y3+, Ho3+, Dy3+, Er3+, Tm3+ and Yb3+) , 2004 .

[19]  N. Ali,et al.  Photo-induced changes in magnetization of GdBaCo2O5+δ , 2003 .

[20]  Y. Ohishi,et al.  Physical pressure effect on the charge-ordering transition ofBaSmFe2O5.0 , 2003 .

[21]  P. Woodward,et al.  Verwey Transition under Oxygen Loading in RBaFe2O5+w (R=Nd and Sm) , 2002 .

[22]  P. V. van Aken,et al.  Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron energy-loss near-edge spectra , 2002 .

[23]  H. Choi,et al.  Reentrant paramagnetic behavior and spin-state transition in the layered cobalt oxide GdBaCo2O5+δ , 2000 .

[24]  A. Elzubair,et al.  On the structure and magnetic properties of the series RBa2Fe3O8+x (R=La,Nd,Sm,Gd) , 1999 .

[25]  J. Miettinen,et al.  Partial Oxygen Ordering in Cubic PerovskiteREBa2Fe3O8+w(RE=Gd, Eu, Sm, Nd) , 1999 .

[26]  V. Cherepanov,et al.  Phase equilibria in the La-Ba-Co-O system , 1999 .

[27]  P. Woodward,et al.  Synthesis and structural investigations of the double perovskites REBaFe2O5+w (RE=Nd, Sm) , 1999 .

[28]  B. Raveau,et al.  Colossal magnetoresistance, charge ordering and related properties of manganese oxides , 1998 .

[29]  V. Voronin,et al.  Phase equilibria in the La-Me-Co-O (Me=Ca, Sr, Ba) systems , 1998 .

[30]  M. Vallet‐Regí,et al.  A New "123" Family: LnBa2Fe3Oz: I. LN = Dy, Ho , 1993 .

[31]  K. Krishnan Iron L3,2 near-edge fine structure studies , 1990 .