Modeling of flat-plate solar thermoelectric generators for space applications

Abstract A model for a flat-plate solar thermoelectric generator (STEG) with sandwich-like structure is established in this paper. The influence of the thermal concentration ratio, length of the thermoelectric legs and other geometrical factors on the performance of the STEG are investigated by numerical calculations. The results indicate that the maximum conversion efficiency and output power per unit mass can reach 5.5% and 6.5 W/kg, respectively, for Bi2Te3 based STEGs working in the Earth’s orbit. For PbTe based STEGs working in the orbits of Venus and Mercury, the maximum conversion efficiency can reach 4.7% and 5.8%, respectively. It is also shown that, under high intensity radiation, the conversion efficiency of a flat-plate STEG can be maintained at a relatively stable level by adjusting the device geometry, which is precisely the advantage of STEG when compared to photovoltaic devices.

[1]  Chang Chung Yang,et al.  Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator , 2014 .

[2]  H. Scherrer,et al.  Solar thermolectric generator based on skutterudites , 2003 .

[3]  Gang Chen,et al.  Theoretical efficiency of solar thermoelectric energy generators , 2011 .

[4]  N. Fuschillo,et al.  Solar thermoelectric generator for near-earth space applications , 1966 .

[5]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[6]  J. V. Daurelle,et al.  FINITE-ELEMENT MODELING OF RADIATION HEAT TRANSFER COUPLED WITH CONDUCTION IN AN ADAPTIVE METHOD , 1994 .

[7]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[8]  Colin R. McInnes,et al.  Technology requirements of exploration beyond Neptune by solar sail propulsion , 2010 .

[9]  Kenneth McEnaney,et al.  Modeling of Solar Thermal Selective Surfaces and Thermoelectric Generators , 2010 .

[10]  Jing Liu,et al.  Recent advances in direct solar thermal power generation , 2009 .

[11]  Z. Ren,et al.  Current progress and future challenges in thermoelectric power generation: From materials to devices , 2015 .

[12]  Maria Telkes,et al.  Solar Thermoelectric Generators , 1954 .

[13]  Frédéric Lesage,et al.  Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system , 2015 .

[14]  E. A. Chávez-Urbiola,et al.  Solar hybrid systems with thermoelectric generators , 2012 .

[15]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[16]  P. Li,et al.  Validation of discrete numerical model for thermoelectric generator used in a concentration solar system , 2015 .

[17]  Onorio Saro,et al.  A PHYSICAL APPROACH TO FINITE-ELEMENT MODELING OF COUPLED CONDUCTION AND CONVECTION , 1993 .

[18]  Jacob Karni,et al.  Solar energy: the thermoelectric alternative. , 2011, Nature materials.

[19]  Ali Shakouri,et al.  Cost-efficiency trade-off and the design of thermoelectric power generators. , 2011, Environmental science & technology.

[20]  Lauryn L. Baranowski,et al.  Concentrated solar thermoelectric generators , 2012 .

[22]  Nader Rahbar,et al.  Thermal modeling and exergetic analysis of a thermoelectric assisted solar still , 2015 .

[23]  Kenneth McEnaney,et al.  Modeling of concentrating solar thermoelectric generators , 2011 .

[24]  A. Emery,et al.  Use of the discrete maximum principle in finite-element analysis of combined conduction and radiation in nonparticipating media , 1995 .

[25]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[26]  Yuan Wang,et al.  Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device , 2014 .

[27]  Geoffrey A. Landis,et al.  High-Temperature Solar Cell Development , 2004 .

[28]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[29]  K. Bathe Finite Element Procedures , 1995 .

[30]  N. Fuschillo,et al.  Flat Plate Solar Thermoelectric Generator Design Analysis , 1965, IEEE Transactions on Aerospace.

[31]  Rajeev J. Ram,et al.  Solar Thermoelectric Generator for Micropower Applications , 2009, Journal of Electronic Materials.

[32]  Abdul Aziz,et al.  Multidimensional Steady Conduction in Convecting, Radiating, and Convecting-Radiating Fins and Fin Assemblies , 1995 .

[33]  K. K. Nielsen,et al.  The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system , 2015, 1508.01344.

[34]  N. Fuschillo,et al.  Fabrication of Flat Plate Solar Thermoelectric Generator Panels for Near-Earth Orbits , 1965, IEEE Transactions on Aerospace.

[35]  Matteo Chiesa,et al.  Modeling and optimization of solar thermoelectric generators for terrestrial applications , 2012 .

[36]  Peng Li,et al.  Design of a Concentration Solar Thermoelectric Generator , 2010 .

[37]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .