A Low-Power, Low-Voltage WBAN-Compatible Sub-Sampling PSK Receiver in 65 nm CMOS

A PSK receiver (RX) is proposed that employs a digital-intensive architecture based on sub-sampling, Q-enhancement, and digital IF to enable low-power (1.3 mW) and low-voltage (0.6 V) operation. Implemented in 65 nm CMOS, this work is compatible with the IEEE 802.15.6 (WBAN) narrowband physical layer specification and achieves -91 dBm and -96 dBm sensitivity at 10-3 BER for π/4-DQPSK and π/2-DBPSK modulation respectively. The proposed highly digital architecture and supply voltage scaling lead to a 3x improvement in RX energy efficiency and minimize silicon area consumption (~ 0.35 mm2 in 65 nm CMOS) while achieving state-of-the-art sensitivity. While this implementation focuses on WBAN demodulation, the proposed architecture and circuit techniques are generally applicable to RX targeting ultra-low power consumption for sensor networks.

[1]  Guido Dolmans,et al.  A 1.9nJ/b 2.4GHz multistandard (Bluetooth Low Energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[2]  Taeksang Song,et al.  A Low-Power 2.4-GHz Current-Reused Receiver Front-End and Frequency Source for Wireless Sensor Network , 2007, IEEE Journal of Solid-State Circuits.

[3]  W. Kluge,et al.  A Fully Integrated 2.4-GHz IEEE 802.15.4-Compliant Transceiver for ZigBee™ Applications , 2006, IEEE Journal of Solid-State Circuits.

[4]  A. Heragu,et al.  A Low Power BAW Resonator Based 2.4-GHz Receiver With Bandwidth Tunable Channel Selection Filter at RF , 2013, IEEE Journal of Solid-State Circuits.

[5]  Ralph Mason,et al.  Complete SOC transceiver in 0.18µm CMOS using Q-enhanced filtering, sub-sampling and injection locking , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[6]  Ralph Mason,et al.  Complete SOC Transceiver in 0.18 $\mu$m CMOS Using Q-Enhanced Filtering, Sub-Sampling and Injection Locking , 2012, IEEE Journal of Solid-State Circuits.

[7]  Oliver King,et al.  A 1 V 5 mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications , 2013, IEEE Journal of Solid-State Circuits.

[8]  Kartikeya Mayaram,et al.  A 2.4 GHz Hybrid Polyphase Filter Based BFSK Receiver With High Frequency Offset Tolerance for Wireless Sensor Networks , 2013, IEEE Journal of Solid-State Circuits.

[9]  Fan Zhang,et al.  Design of a 300-mV 2.4-GHz Receiver Using Transformer-Coupled Techniques , 2013, IEEE Journal of Solid-State Circuits.

[10]  Anantha Chandrakasan,et al.  A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for Medical Implant Communications , 2009, 2008 IEEE Symposium on VLSI Circuits.

[11]  Changhui Hu,et al.  A Near-Threshold, 0.16 nJ/b OOK-Transmitter With 0.18 nJ/b Noise-Cancelling Super-Regenerative Receiver for the Medical Implant Communications Service , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[12]  Arun Paidimarri,et al.  A 2.4 GHz Multi-Channel FBAR-based Transmitter With an Integrated Pulse-Shaping Power Amplifier , 2013, IEEE Journal of Solid-State Circuits.

[13]  Antonio Liscidini,et al.  Low-Power Quadrature Receivers for ZigBee (IEEE 802.15.4) Applications , 2010, IEEE Journal of Solid-State Circuits.

[14]  T.H. Lee,et al.  A 17-mW 0.66-mm/sup 2/ direct-conversion receiver for 1-Mb/s cable replacement , 2005, IEEE Journal of Solid-State Circuits.

[15]  Kartikeya Mayaram,et al.  An Ultralow-Power Receiver for Wireless Sensor Networks , 2010, IEEE Journal of Solid-State Circuits.

[16]  M. Declercq,et al.  An 11-Mb/s 2.1-mW Synchronous Superregenerative Receiver at 2.4 GHz , 2007, IEEE Transactions on Microwave Theory and Techniques.

[17]  K.S.J. Pister,et al.  Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply , 2006, IEEE Journal of Solid-State Circuits.

[18]  M. Declercq,et al.  A low-power CMOS super-regenerative receiver at 1 GHz , 2001, IEEE J. Solid State Circuits.

[19]  Zhihua Wang,et al.  A Reconfigurable Sliding-IF Transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN Hubs With Only 21% Tuning Range VCO , 2013, IEEE Journal of Solid-State Circuits.

[20]  Y. Tsividis,et al.  A 2.4-GHz ISM-Band Sliding-IF Receiver With a 0.5-V Supply , 2008, IEEE Journal of Solid-State Circuits.

[21]  R. Castello,et al.  Single-Stage Low-Power Quadrature RF Receiver Front-End: The LMV Cell , 2006, IEEE Journal of Solid-State Circuits.

[22]  Rodney G. Vaughan,et al.  The theory of bandpass sampling , 1991, IEEE Trans. Signal Process..

[23]  Christian Enz,et al.  A 2.4-GHz MEMS-Based PLL-Free Multi-Channel Receiver With Channel Filtering at RF , 2013, IEEE J. Solid State Circuits.

[24]  J.C. Leete,et al.  A 2.4 GHz CMOS transceiver for Bluetooth , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[25]  Zhihua Wang,et al.  Process Variation Compensation of a 2.4GHz LNA in 0.18um CMOS Using Digitally Switchable Capacitance , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[26]  Nan Qi,et al.  9.6 A 1.3mW 0.6V WBAN-compatible sub-sampling PSK receiver in 65nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).