An Application of Pontryagin's Principle to Brownian Particle Engineered Equilibration

We present a stylized model of controlled equilibration of a small system in a fluctuating environment. We derive the optimal control equations steering in finite-time the system between two equilibrium states. The corresponding thermodynamic transition is optimal in the sense that it occurs at minimum entropy if the set of admissible controls is restricted by certain bounds on the time derivatives of the protocols. We apply our equations to the engineered equilibration of an optical trap considered in a recent proof of principle experiment. We also analyze an elementary model of nucleation previously considered by Landauer to discuss the thermodynamic cost of one bit of information erasure. We expect our model to be a useful benchmark for experiment design as it exhibits the same integrability properties of well-known models of optimal mass transport by a compressible velocity field.

[1]  M. Pavon,et al.  Lagrange approach to the optimal control of diffusions , 1993 .

[2]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[3]  H. Qian Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-energy compensation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Kay Schwieger,et al.  How nanomechanical systems can minimize dissipation. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  J. Bismut An Introductory Approach to Duality in Optimal Stochastic Control , 1978 .

[6]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[7]  C. Maes,et al.  On the definition of entropy production, via examples , 2000 .

[8]  C. Landim,et al.  Macroscopic fluctuation theory , 2014, 1404.6466.

[9]  K. Gawȩdzki,et al.  Fluctuation Relations for Diffusion Processes , 2007, 0707.2725.

[10]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[11]  Paolo Dai Pra,et al.  A stochastic control approach to reciprocal diffusion processes , 1991 .

[12]  U. Frisch,et al.  Reconstruction of the early Universe as a convex optimization problem , 2003 .

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  F. Ritort,et al.  Recent progress in fluctuation theorems and free energy recovery , 2011, 1101.3174.

[15]  Christian L'eonard,et al.  An entropic interpolation problem for incompressible viscid fluids , 2017, 1704.02126.

[16]  Ken Sekimoto,et al.  Langevin Equation and Thermodynamics , 1998 .

[17]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[18]  E. Aurell,et al.  Boundary layers in stochastic thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[20]  A. Petrosyan,et al.  Fast equilibrium switch of a micro mechanical oscillator , 2016, 1606.02453.

[21]  Erik Aurell,et al.  Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.

[22]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[23]  Yuan,et al.  Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces , 2000, Ultramicroscopy.

[24]  A characterization of reciprocal processes via an integration by parts formula on the path space , 2002 .

[25]  Leonard Rogers Duality in constrained optimal investment and consumption problems: a synthesis , 2003 .

[26]  Géométrie différentielle stochastique, II , 1982 .

[27]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[28]  D. Villamaina,et al.  Out-of-equilibrium generalized fluctuation-dissipation relations , 2012, 1203.4941.

[29]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[30]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[31]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[32]  Imre Fényes,et al.  Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik , 1952 .

[33]  A. Puglisi,et al.  Entropy production in non-equilibrium fluctuating hydrodynamics. , 2012, The Journal of chemical physics.

[34]  Krzysztof Gawedzki,et al.  Fluctuation Relations in Stochastic Thermodynamics , 2013, 1308.1518.

[35]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[36]  Valley views: instantons, large order behaviors, and supersymmetry , 1998, hep-th/9808034.

[37]  Yonggun Jun,et al.  High-precision test of Landauer's principle in a feedback trap. , 2014, Physical review letters.

[38]  E. Lutz,et al.  Memory erasure in small systems. , 2008, Physical review letters.

[39]  A. Petrosyan,et al.  Engineered Swift Equilibration of a Brownian particle , 2015, Nature Physics.

[40]  C Jarzynski,et al.  Experimental test of Hatano and Sasa's nonequilibrium steady-state equality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Robert Aebi Schrödinger Diffusion Processes , 1996 .

[42]  Paolo Muratore-Ginanneschi On the use of stochastic differential geometry for non-equilibrium thermodynamic modeling and control , 2012, 1210.1133.

[43]  Daniel Liberzon,et al.  Calculus of Variations and Optimal Control Theory: A Concise Introduction , 2012 .

[44]  Kurt Jacobs,et al.  Stochastic Processes for Physicists: Understanding Noisy Systems , 2010 .

[45]  Clemens Bechinger,et al.  Realization of a micrometre-sized stochastic heat engine , 2011, Nature Physics.

[46]  Alessio Figalli,et al.  The Monge–Ampère equation and its link to optimal transportation , 2013, 1310.6167.

[47]  Minping Qian,et al.  Mathematical Theory of Nonequilibrium Steady States , 2004 .

[48]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[49]  QUANTUM FLUCTUATIONS (Princeton Series in Physics) , 1986 .