Relativistic symmetries in Yukawa-type interactions with Coulomb-like tensor

This study presents the solutions of the Dirac equation with a new suggested Yukawa-type potential for any spin-orbit quantum number @k interacting with a Coulomb-like tensor interaction. In the presence of spin and pseudospin (p-spin) symmetries, the approximate energy eigenvalues and wave functions are obtained by means of the parametric Nikiforov-Uvarov (pNU) method and the asymptotic iteration method (AIM). The numerical results show that the Coulomb-like tensor interaction removes degeneracies between spin and p-spin state doublets. The bound state solutions of the Schrodinger and Klein-Gordon equations for this new potential have also been presented. Our analytical results are in exact agreements with previous works.

[1]  Gao-Feng Wei,et al.  Pseudospin symmetry for modified Rosen-Morse potential including a Pekeris-type approximation to the pseudo-centrifugal term , 2010 .

[2]  M. Hamzavi,et al.  EXACT SOLUTIONS OF DIRAC EQUATION WITH HARTMANN POTENTIAL BY NIKIFOROV-UVAROV METHOD , 2010 .

[3]  S. Ikhdair,et al.  Approximate analytical solutions to relativistic and nonrelativistic Pöschl–Teller potential with its thermodynamic properties , 2013, 1308.0155.

[4]  Gao-Feng Wei,et al.  Pseudospin symmetry in the relativistic Manning-Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term , 2010 .

[5]  Gao-Feng Wei,et al.  Algebraic approach to pseudospin symmetry for the Dirac equation with scalar and vector modified Pöschl-Teller potentials , 2009 .

[6]  R. Sever,et al.  EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN–GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL , 2008, 0801.4857.

[7]  M. Moshinsky,et al.  A Dirac equation with an oscillator potential and spin-orbit coupling , 1991 .

[8]  M. Moshinsky,et al.  The Dirac oscillator , 1989 .

[9]  Sameer M. Ikhdair,et al.  Exact Klein-Gordon equation with spatially dependent masses for unequal scalar-vector Coulomb-like potentials , 2009, 0903.3841.

[10]  T Goldman,et al.  Relativistic symmetry suppresses quark spin-orbit splitting. , 2001, Physical review letters.

[11]  M. Kermode,et al.  The effective-range function in the presence of a Yukawa potential , 1984 .

[12]  Liehui Zhang,et al.  Approximate analytical solutions of the Dirac equation with the generalized Morse potential model in the presence of the spin symmetry and pseudo-spin symmetry , 2009 .

[13]  R. Sever,et al.  Exact solution of Schrödinger equation for Pseudoharmonic potential , 2007, quant-ph/0701206.

[14]  S. Ikhdair On the bound-state solutions of the Manning–Rosen potential including an improved approximation to the orbital centrifugal term , 2011, 1104.0301.

[15]  S. Brandt,et al.  Special Functions of Mathematical Physics , 2011 .

[16]  R. Sever,et al.  Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential , 2010 .

[17]  B. Falaye Exact Solutions of the Klein–Gordon Equation for Spherically Asymmetrical Singular Oscillator , 2012 .

[18]  K. Oyewumi,et al.  Exactly Complete Solutions of the Pseudoharmonic Potential in N-Dimensions , 2008 .

[19]  M. Hamzavi,et al.  Relativistic Morse Potential and Tensor Interaction , 2012 .

[20]  V. B. Uvarov,et al.  Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .

[21]  W. A. Yahya,et al.  SOLUTIONS OF THE DIRAC EQUATION WITH THE SHIFTED DENG FAN POTENTIAL INCLUDING YUKAWA-LIKE TENSOR INTERACTION , 2013, 1402.4470.

[22]  B. A. Kagali,et al.  DIRAC BOUND STATES IN A ONE-DIMENSIONAL SCALAR SCREENED COULOMB POTENTIAL , 2002 .

[23]  J. Ginocchio Relativistic symmetries in nuclei and hadrons , 2005 .

[24]  X. Gu Arbitrary l state solutions of the Schrödinger equation with the Deng-Fan molecular potential , 2008 .

[25]  S. Dong,et al.  Exact solutions of the Dirac equation with a coulomb plus scalar potential in 2 + 1 dimensions , 2002 .

[26]  D.Troltenier,et al.  Generalized Pseudo-SU(3) Model and Pairing , 1994, nucl-th/9411013.

[27]  Gao-Feng Wei,et al.  Spin symmetry in the relativistic symmetrical well potential including a proper approximation to the spin–orbit coupling term , 2010 .

[28]  Dirac and Klein Gordon equations with equal scalar and vector potentials , 2005, hep-th/0503208.

[29]  W. A. Yahya,et al.  Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model , 2014 .

[30]  Gao-Feng Wei,et al.  The spin symmetry for deformed generalized Pöschl–Teller potential , 2009 .

[31]  K. Shimizu,et al.  Pseudo LS coupling and pseudo SU3 coupling schemes , 1969 .

[32]  S. Ikhdair,et al.  Relativistic symmetries in trigonometric Poschl-Teller potential plus tensor interaction , 2013, 1308.0008.

[33]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[34]  I. Boztosun,et al.  Bound state solutions of the Hulthén potential by using the asymptotic iteration method , 2007 .

[35]  Shi-Hai Dong,et al.  The realization of dynamic group for the pseudoharmonic oscillator , 2003, Appl. Math. Lett..

[36]  M. Hamzavi,et al.  EXACT SOLUTION OF DIRAC EQUATION FOR MIE-TYPE POTENTIAL BY USING THE NIKIFOROV–UVAROV METHOD UNDER THE PSEUDOSPIN AND SPIN SYMMETRY LIMIT , 2010 .

[37]  R. Sever,et al.  Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential , 2006, quant-ph/0611183.

[38]  B. Falaye Any ℓ-state solutions of the Eckart potential via asymptotic iteration method , 2012 .

[39]  B. Falaye The Klein-Gordon equation with ring-shaped potentials: Asymptotic iteration method , 2012 .

[40]  H. Ciftci,et al.  Perturbation theory in a framework of iteration methods , 2005, math-ph/0504056.

[41]  R. Hall,et al.  ASYMPTOTIC ITERATION METHOD FOR SINGULAR POTENTIALS , 2008, 0802.2072.

[42]  S. Ikhdair,et al.  Relativistic symmetries in trigonometric Poschl-Teller potential plus tensor interaction , 2013 .

[43]  Sameer M. Ikhdair,et al.  Approximate κ-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry , 2012, 1203.2023.

[44]  Ramazan Sever,et al.  Approximate bound state solutions of Dirac equation with Hulthén potential including Coulomb-like tensor potential , 2010, Appl. Math. Comput..

[45]  H. Akçay Dirac equation with scalar and vector quadratic potentials and Coulomb-like tensor potential , 2009 .

[46]  H. Akçay The Dirac oscillator with a Coulomb-like tensor potential , 2007 .

[47]  S. Dong,et al.  The scattering of the Manning–Rosen potential with centrifugal term , 2008 .

[48]  M. Fiolhais,et al.  Pseudospin symmetry and the relativistic harmonic oscillator , 2003, nucl-th/0310071.

[49]  M. Hamzavi,et al.  Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method , 2010 .

[50]  Guo-Hua Sun,et al.  Exactly complete solutions of the Schrödinger equation with a spherically harmonic oscillatory ring-shaped potential , 2010 .

[51]  R. Sever,et al.  Exact solutions of the radial Schrödinger equation for some physical potentials , 2007, quant-ph/0702141.

[52]  Min Zhang,et al.  Pseudospin symmetry for a new ring-shaped non-spherical harmonic oscillator potential , 2009 .

[53]  H. Ciftci,et al.  Asymptotic iteration method for eigenvalue problems , 2003, math-ph/0309066.

[54]  Ramazan Sever,et al.  Relativistic and nonrelativistic bound states of the isotonic oscillator by Nikiforov-Uvarov method , 2011, 1203.1736.

[55]  A. Bohr,et al.  Pseudospin in Rotating Nuclear Potentials , 1982 .

[56]  H. Hassanabadi,et al.  Exact Spin and Pseudospin Symmetry Solutions of the Dirac Equation for Mie-Type Potential Including a Coulomb-like Tensor Potential , 2010 .

[57]  J. Ginocchio Pseudospin as a relativistic symmetry , 1996, nucl-th/9611044.

[58]  S. Dong,et al.  ON THE ANALYSIS OF THE EIGENVALUES OF THE DIRAC EQUATION WITH A 1/r POTENTIAL IN D DIMENSIONS , 2004 .

[59]  R. Sever,et al.  The Dirac–Yukawa problem in view of pseudospin symmetry , 2011 .

[60]  I. Boztosun,et al.  EXACT ANALYTICAL SOLUTION OF THE KLEIN GORDON EQUATION FOR THE PIONIC ATOM BY ASYMPTOTIC ITERATION METHOD , 2006 .

[61]  A. D. Castro,et al.  Tensor coupling and pseudospin symmetry in nuclei , 2004, nucl-th/0411120.

[62]  Ramazan Sever,et al.  Approximate bound states of the Dirac equation with some physical quantum potentials , 2012, Appl. Math. Comput..

[63]  R. Greene,et al.  Variational wave functions for a screened Coulomb potential , 1976 .

[64]  Approximate Eigensolutions of the Deformed Woods—Saxon Potential via AIM , 2013 .

[65]  Sameer M. Ikhdair,et al.  Approximate solutions of the Dirac equation for the Rosen–Morse potential including the spin-orbit centrifugal term , 2009, 0912.0619.

[66]  Sameer M. Ikhdair,et al.  ROTATIONAL AND VIBRATIONAL DIATOMIC MOLECULE IN THE KLEIN–GORDON EQUATION WITH HYPERBOLIC SCALAR AND VECTOR POTENTIALS , 2009, 0905.2867.

[67]  B. Falaye Energy spectrum for trigonometric Pöschl–Teller potential , 2012 .

[68]  S. Dong,et al.  Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term , 2007 .

[69]  M. Hamzavi,et al.  Approximate spin and pseudospin solutions to the Dirac equation for the inversely quadratic Yukawa potential and tensor interaction , 2012, 1203.6769.

[70]  T. Barakat THE ASYMPTOTIC ITERATION METHOD FOR DIRAC AND KLEIN–GORDON EQUATIONS WITH A LINEAR SCALAR POTENTIAL , 2006 .

[71]  M. Setare,et al.  Spin symmetry of the Dirac equation with the Yukawa potential , 2010 .

[72]  K. T. Hecht,et al.  GENERALIZED SENIORITY FOR FAVORED J # 0 PAIRS IN MIXED CONFIGURATIONS , 1969 .

[73]  Sameer M. Ikhdair,et al.  An approximate κ; state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry , 2011, 1104.0132.

[74]  Sameer M. Ikhdair,et al.  Bound States of the Klein-Gordon for Exponential-Type Potentials in D-Dimensions , 2011, J. Quantum Inf. Sci..

[75]  B. Falaye Arbitrary ℓ-State Solutions of the Hyperbolical Potential by the Asymptotic Iteration Method , 2012 .

[76]  Ramazan Sever,et al.  Two approximation schemes to the bound states of the Dirac–Hulthén problem , 2011, 1110.0940.

[77]  Leander,et al.  Abundance and systematics of nuclear superdeformed states; relation to the pseudospin and pseudo-SU(3) symmetries. , 1987, Physical review letters.

[78]  Guo-Hua Sun,et al.  THE SOLUTION OF THE SECOND PÖSCHL–TELLER LIKE POTENTIAL BY NIKIFOROV–UVAROV METHOD , 2010 .