SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51

On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He i lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (∼1013 cm) would be highly inconsistent with constraints from our post-explosion spectra.

[1]  D. Frail,et al.  CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES , 2011, 1111.6109.

[2]  R. Kotak,et al.  THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51 , 2011, 1106.2565.

[3]  Richard Walters,et al.  REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.

[4]  E. Ofek,et al.  PTF11eon/SN2011dh is Possibly a Type IIb Event , 2011 .

[5]  Adam A. Miller,et al.  A MASSIVE PROGENITOR OF THE LUMINOUS TYPE IIn SUPERNOVA 2010jl , 2010, 1011.4150.

[6]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[7]  Eli Waxman,et al.  THE EARLY UV/OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1002.3414.

[8]  E. O. Ofek,et al.  SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.

[9]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[10]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[11]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[12]  R. Foley,et al.  THE TRANSITIONAL STRIPPED-ENVELOPE SN 2008ax: SPECTRAL EVOLUTION AND EVIDENCE FOR LARGE ASPHERICITY , 2010, 1001.2775.

[13]  A. Soderberg,et al.  TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS , 2009, 0911.3408.

[14]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[15]  J. Anderson,et al.  Comparisons of the radial distributions of core‐collapse supernovae with those of young and old stellar populations★ , 2009, 0907.0034.

[16]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[17]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[18]  I. Paris,et al.  Relative frequencies of supernovae types: dependence on host galaxy magnitude, galactocentric radius, and local metallicity , 2009, 0905.3986.

[19]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[20]  R. Chevalier,et al.  Shock Breakout Emission from a Type Ib/c Supernova: XRT 080109/SN 2008D , 2008, 0806.0371.

[21]  E. Ofek,et al.  The Type IIb SN 2008ax: spectral and light curve evolution , 2008, 0805.1914.

[22]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[23]  Puragra Guhathakurta,et al.  Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS) , 2007, 0711.0808.

[24]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[25]  E. Waxman,et al.  GRB 060218: A Relativistic Supernova Shock Breakout , 2007, astro-ph/0702450.

[26]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[27]  M. Livio,et al.  Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass? , 2005, astro-ph/0507394.

[28]  J. Bloom,et al.  The Calibration of the Swift UVOT Optical Observations: A Recipe for Photometry , 2005, astro-ph/0505504.

[29]  N. B. Suntzeff,et al.  The J-Band Light Curve of SN 2003lw, Associated with GRB 031203 , 2004, astro-ph/0403608.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[32]  Thomas Matheson,et al.  The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution , 1995 .

[33]  S. Woosley,et al.  SN 1993J: A Type IIb supernova , 1994 .

[34]  Bruno Leibundgut,et al.  UBVRI Photometry of SN 1993J in M81: The First 120 Days , 1994 .

[35]  L. Ho,et al.  The ``Type IIb'' Supernova 1993J in M81: A Close Relative of Type Ib Supernovae , 1993 .

[36]  Dan F. Lester,et al.  Early observations of SN 1993J in M81 at McDonald observatory , 1993 .

[37]  R. Chevalier,et al.  Early expansion and luminosity evolution of supernovae , 1992 .

[38]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[39]  T. Piran,et al.  Supernovae : Jerusalem Winter School for Theoretical Physics, Jerusalem, 28 Dec. 88-5 Jan. 89 , 1990 .

[40]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .