A new approach to edge detection

This paper introduces the discrete singular convolution (DSC) algorithm for edge detection. Two classes of new edge detectors, DSC edge detector (DSCED) and DSC anti-noise edge detector (DSCANED), are proposed for the detection of multiscale edges. The DSCED is capable of extracting the 4ne details of images, whereas DSCANED is robust against noise. The combination of two classes of DSC edge detectors provides an e5cient and reliable approach to multiscale edge detection. Computer experiments are carried out for extracting edge information from real images, with andwithout the contamination of Gaussian white noise. Sharp image edges are obtainedfrom a variety of sample images, including those that are degraded to a peak-signal–noise-ratio (PSNR) of 16 dB. Some of the best results are attainedfrom a number of standardtest problems. The performance of the proposedalgorithm is comparedwith many other existing methods, such as the Sobel, Prewitt and Canny detectors. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

[1]  G. W. Wei,et al.  Generalized Perona-Malik equation for image restoration , 1999, IEEE Signal Processing Letters.

[2]  D. Vu,et al.  Edge detection using neural networks , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[3]  G. Wei,et al.  Wavelets generated by using discrete singular convolution kernels , 2000 .

[4]  G. Wei,et al.  A unified approach for the solution of the Fokker-Planck equation , 2000, physics/0004074.

[5]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ronald W. Schafer,et al.  Multilevel thresholding using edge matching , 1988, Comput. Vis. Graph. Image Process..

[7]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  N. Nahi,et al.  Bayesian recursive image estimation. , 1972 .

[9]  S. Sitharama Iyengar,et al.  An efficient edge detection algorithm using relaxation labeling technique , 1995, Pattern Recognit..

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[13]  F. R. Hansen,et al.  Image segmentation using simple markov field models , 1982, Comput. Graph. Image Process..

[14]  R. P. Johnson,et al.  Contrast based edge detection , 1990, Pattern Recognit..

[15]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Aggelos K. Katsaggelos,et al.  Edge detection using a neural network , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[17]  R. Haralick,et al.  A facet model for image data , 1981 .

[18]  Ludwik Kurz,et al.  Line Detection in Noisy and Structured Backgrounds Using Græco-Latin Squares , 1993, CVGIP Graph. Model. Image Process..

[19]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  Jun S. Huang,et al.  Statistical theory of edge detection , 1988, Comput. Vis. Graph. Image Process..

[21]  David Malah,et al.  A study of edge detection algorithms , 1982, Comput. Graph. Image Process..

[22]  Alan L. Yuille,et al.  A regularized solution to edge detection , 1985, J. Complex..

[23]  Guang Deng,et al.  Differentiation-Based Edge Detection Using the Logarithmic Image Processing Model , 1998, Journal of Mathematical Imaging and Vision.

[24]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Stéphane Mallat,et al.  Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.

[26]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  R A Kirsch,et al.  Computer determination of the constituent structure of biological images. , 1971, Computers and biomedical research, an international journal.

[28]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[29]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[30]  Rama Chellappa,et al.  A unified approach to boundary perception: edges, textures, and illusory contours , 1993, IEEE Trans. Neural Networks.

[31]  Sim Heng Ong,et al.  Edge detection using a neural network , 1994, Pattern Recognit..

[32]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Azriel Rosenfeld,et al.  Picture Processing and Psychopictorics , 1970 .

[34]  Ludwik Kurz,et al.  Edge detection in correlated noise using latin square masks , 1988, Pattern Recognit..

[35]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[36]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[37]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .