The INLA approach for disease mapping and health risk assessment

Disease mapping is an essential statistical tool for studying the spatial pattern of the disease-specific mortality or hospitalization with respect to a population. Moreover, when relevant information about risk factors are available, it is possible to assess the impact on human health of environmental hazards. In this work the Integrated Nested Laplace Approximation (INLA) is introduced as an alternative to Markov Chain Monte Carlo for Bayesian inference with hierarchical latent Gaussian models. We describe how to implement a two-step procedure for assessing exposure and disease risk by modeling both geostatistical and areal data.

[1]  G. Shaddick,et al.  Using a probabilistic model (pCNEM) to estimate personal exposure to air pollution , 2005 .

[2]  D B Dunson,et al.  Commentary: practical advantages of Bayesian analysis of epidemiologic data. , 2001, American journal of epidemiology.

[3]  Andrew B. Lawson,et al.  An Introductory Guide to Disease Mapping , 2001 .

[4]  Alessio Pollice,et al.  Discussing the “big n problem” , 2013, Stat. Methods Appl..

[5]  Andrew B. Lawson,et al.  Bayesian disease mapping , 2013 .

[6]  T. Holford,et al.  Integrated exposure modeling: A model using GIS and GLM , 2010, Statistics in medicine.

[7]  Michela Cameletti,et al.  Comparing spatio‐temporal models for particulate matter in Piemonte , 2011 .

[8]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[9]  H. Rue,et al.  Spatio-temporal modeling of particulate matter concentration through the SPDE approach , 2012, AStA Advances in Statistical Analysis.

[10]  Gianluca Baio,et al.  Spatial and spatio-temporal models with R-INLA. , 2013, Spatial and spatio-temporal epidemiology.

[11]  Leonhard Held,et al.  Spatio‐temporal disease mapping using INLA , 2011 .

[12]  Jaymie R Meliker,et al.  Spatio-temporal epidemiology: principles and opportunities. , 2011, Spatial and spatio-temporal epidemiology.

[13]  Roger D Peng,et al.  Spatial misalignment in time series studies of air pollution and health data. , 2010, Biostatistics.

[14]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data , 2004 .

[15]  Leonhard Held,et al.  A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$ , 2011, Comput. Stat..

[16]  Edzer Pebesma,et al.  Spatio-temporal modelling of individual exposure to air pollution and its uncertainty , 2013 .

[17]  Brian J. Reich,et al.  Spatial-temporal association between fine particulate matter and daily mortality , 2009, Comput. Stat. Data Anal..

[18]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[19]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[20]  H. Künsch Gaussian Markov random fields , 1979 .

[21]  Andrew B. Lawson,et al.  Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology , 2008 .

[22]  Sander Greenland,et al.  Bayesian perspectives for epidemiological research: I. Foundations and basic methods. , 2006, International journal of epidemiology.

[23]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[24]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .