Abundant lump-type solutions of the Jimbo-Miwa equation in (3+1)-dimensions

Abstract Based on the Hirota bilinear form of the (3+1)-dimensional Jimbo–Miwa equation, ten classes of its lump-type solutions are generated via Maple symbolic computations, whose analyticity can be easily achieved by taking special choices of the involved parameters. Those solutions supplement the existing lump-type solutions presented previously in the literature.

[1]  P. Caudrey,et al.  Memories of Hirota’s method: application to the reduced Maxwell–Bloch system in the early 1970s† , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Wenxiu Ma Generalized Bilinear Differential Equations , 2012 .

[3]  D. Sinelshchikov Comment on: New exact traveling wave solutions of the (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation , 2010 .

[4]  Abdul-Majid Wazwaz,et al.  New solutions of distinct physical structures to high-dimensional nonlinear evolution equations , 2008, Appl. Math. Comput..

[5]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[6]  Wen-Xiu Ma,et al.  A bilinear Bäcklund transformation of a (3+1) -dimensional generalized KP equation , 2012, Appl. Math. Lett..

[7]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[8]  Wenxiu Ma,et al.  Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations , 2011 .

[9]  F. Gesztesy,et al.  Rational KP and mKP-solutions in Wronskian form , 1991 .

[10]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[11]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[12]  Abdul-Majid Wazwaz Two B-type Kadomtsev–Petviashvili equations of (2 + 1) and (3 + 1) dimensions: Multiple soliton solutions, rational solutions and periodic solutions , 2013 .

[13]  J. Nimmo,et al.  Lump solutions of the BKP equation , 1990 .

[14]  İsmail Aslan,et al.  Exact and explicit solutions to the (3 + 1)-dimensional Jimbo-Miwa equation via the Exp-function method , 2008 .

[15]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[16]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[17]  Wen-Xiu Ma,et al.  A Study on Rational Solutions to a KP-like Equation , 2015 .

[18]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[19]  Yi Zhang,et al.  Rational solutions to a KdV-like equation , 2015, Appl. Math. Comput..

[20]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[21]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[22]  Wenxiu Ma,et al.  Rational solutions of the Toda lattice equation in Casoratian form , 2004 .

[23]  Pierre Gaillard,et al.  Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves , 2016 .

[24]  Kenji Imai,et al.  DROMION AND LUMP SOLUTIONS OF THE ISHIMORI-I EQUATION , 1997 .

[25]  Ismail Aslan Constructing rational and multi‐wave solutions to higher order NEEs via the Exp‐function method , 2011 .

[26]  Alberto Tacchella On rational solutions of multicomponent and matrix KP hierarchies , 2011 .

[27]  M. Khalfallah New exact traveling wave solutions of the (3 + 1) dimensional Kadomtsev–Petviashvili (KP) equation , 2009 .

[28]  David J. Kaup,et al.  The lump solutions and the Bäcklund transformation for the three‐dimensional three‐wave resonant interaction , 1981 .

[29]  Wenxiu Ma,et al.  Bilinear equations, Bell polynomials and linear superposition principle , 2013 .

[30]  Bao-Zhu Zhao,et al.  Exact rational solutions to a Boussinesq-like equation in (1+1)-dimensions , 2015, Appl. Math. Lett..

[31]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Jingyuan Yang,et al.  Lump solutions to the BKP equation by symbolic computation , 2016 .

[33]  Wenxiu Ma Generalized Wronskians and Solutions to the Korteweg-de Vries Equation , 2003 .

[34]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[35]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[36]  Wenxiu Ma,et al.  A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation , 2009, 0903.5337.

[37]  C. Garrett Rogue waves , 2012 .

[38]  Wenxiu Ma,et al.  Trilinear equations, Bell polynomials, and resonant solutions , 2013 .

[39]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[40]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[41]  Wenxiu Ma,et al.  A second Wronskian formulation of the Boussinesq equation , 2009 .

[42]  Alfred Ramani,et al.  Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? , 1986 .

[43]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.