Algorithms for quadrilateral and hexahedral mesh generation

This lecture reviews the state of the art in quadrilateral and hexahedral mesh generation. Three lines of development – block decomposition, superposition and the dual method – are described. The refinement problem is discussed, and methods for octree-based meshing are presented.

[1]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .

[2]  Günter Ewald,et al.  Geometry: an introduction , 1971 .

[3]  Yung K. Choo,et al.  Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions , 1995 .

[4]  Robert Schneiders,et al.  Octree-Based Hexahedral Mesh Generation , 2000, Int. J. Comput. Geom. Appl..

[5]  Matthias Müller-Hannemann,et al.  Hexahedral Mesh Generation by Successive Dual Cycle Elimination , 1999, Engineering with Computers.

[6]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[7]  Ko-Foa Tchon,et al.  OCTREE-BASED HEXAHEDRAL MESH GENERATION FOR Viscous FLOW SIMULATIONS , 1997 .

[8]  Rolf H. Möhring,et al.  Using network flows for surface modeling , 1995, SODA '95.

[9]  F. SchneidersR.Schindler,et al.  Octree-based Generation of Hexahedral Element Meshes , 1996 .

[10]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[11]  Patrick M. Knupp,et al.  Fundamentals of Grid Generation , 2020 .

[12]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[13]  Hiroshi Sakurai,et al.  Automated Hexahedral Mesh Generation by Swept Volume Decomposition and Recomposition , 1996 .

[14]  M. Sabin,et al.  Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .

[15]  Cecil Armstrong,et al.  Finite-element mesh control by integer programming , 1993 .

[16]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[17]  Guido D. Dhondt,et al.  Unstructured 20-node brick element meshing , 2001, Comput. Aided Des..

[18]  Scott A. Mitchell,et al.  A Characterization of the Quadrilateral Meshes of a Surface Which Admit a Compatible Hexahedral Mesh of the Enclosed Volume , 1996, STACS.

[19]  Arno Ronzheimer,et al.  The Parametric Grid Generation System MegaCads. , 1996 .

[20]  Dietrich Nowottny,et al.  Quadrilateral Mesh Generation via Geometrically Optimized Domain Decomposition , 1997 .

[21]  M. Sabin,et al.  Criteria for comparison of automatic mesh generation methods , 1991 .

[22]  R. Gadh,et al.  Basic LOgical Bulk Shapes (BLOBs) for Finite Element Hexahedral Mesh Generation to Support Virtual Prototyping , 1998 .

[23]  Sergio Idelsohn,et al.  All-hexahedral element meshing: Generation of the dual mesh by recurrent subdivision , 2000 .

[24]  R. Schneiders,et al.  Reening Quadrilateral and Hexahedral Element Meshes , 1996 .

[25]  Jonathan Richard Shewchuk,et al.  A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations , 1998, SCG '98.